
Picalo Manual

Version 3

Conan C. Albrecht

March 31, 2010

Contents

1 Introduction 5
1.1 A Short FAQ . 6

1.1.1 Why Picalo? . 6
1.1.2 What is the Picalo philosophy? . 7
1.1.3 What is Picalo’s relationship to ACL and IDEA? 7
1.1.4 Why not use MS Excel? . 7
1.1.5 How does Picalo compare with EnCase or The Forensic Toolkit? . . 8
1.1.6 What is Picalo’s relationship to Numerical Python/Numarray/SciPy? 8
1.1.7 What is Picalo’s relationship to Python? 8
1.1.8 Why Python (instead of VB, Perl, Java, .Net)? 9
1.1.9 Why open source? . 9
1.1.10 Where does the name Picalo come from? 10
1.1.11 What are Picalo’s Limitations? . 10

1.2 Acknowledgments . 11
1.3 License . 11

2 A Tour of Picalo 12
2.1 The Picalo Workspace . 12

2.1.1 Object Tree . 12
2.1.2 Table/Script Tabs . 12
2.1.3 Shell, Command Log, and Script Output 12

2.2 Working With Picalo Commands . 14
2.2.1 Menu and Toolbar . 14

2.3 Expressions . 17

3 Detectlets 18
3.1 Example Detectlets . 19
3.2 Detectlet Installation . 19

4 Best Practices Usage 20

5 Picalo Preferences 22
5.1 Chapter Learning Objectives . 22
5.2 Access General Preferences . 22

1

5.3 Disable Splash Screen . 23
5.4 Automatically Check for Updates . 24
5.5 Change Preferred Language . 25
5.6 Add commands to run at startup . 26
5.7 Access the Script Editor Preferences . 26
5.8 Change Font Preferences . 27
5.9 Tab Preferences . 28
5.10 Method Preferences . 29

6 Introduction to Picalo Tables 30
6.1 Learning Objectives . 30
6.2 Picalo Tables . 30
6.3 Loading and Saving Picalo Files . 32
6.4 Sorting Tables . 33
6.5 Editing and Adding Records . 35
6.6 Copying and Pasting Table Data . 36
6.7 Importing Data . 36
6.8 Closing Tables . 36
6.9 Rows and Columns: What are they? . 37
6.10 Inserting and Deleting Rows . 38
6.11 Insert and Delete Fields (or Columns) . 40
6.12 Saving Updates and Changes to Table Properties 43

7 Changing Table Properties 46
7.1 Learning Objectives . 46
7.2 Table Properties . 46
7.3 Adding Columns . 48
7.4 Removing Columns . 49
7.5 Data Types . 50
7.6 Selecting Precision . 51
7.7 Selecting Format . 52

8 Filtering 54
8.1 Learning Objectives . 54
8.2 Why is filtering important? . 54
8.3 Creating a Filter . 55

8.3.1 Right Click . 56
8.3.2 Filter Box . 56
8.3.3 Select By Value . 57
8.3.4 Select By Expression . 57

8.4 Simple Expressions . 58
8.5 Complex Expressions . 59

2

9 Sorting Picalo Tables 60
9.1 Learning Objectives . 60
9.2 Ascending vs. Descending . 60
9.3 Sort Using a Right Click . 60
9.4 Sort Using the File Menu . 61

10 Database Access 64
10.1 Connecting to MySQL . 64
10.2 Connecting to MySQL via ODBC . 68
10.3 Querying a Database for Information . 71

11 Joining Two Tables Together 74
11.1 Learning Objectives . 74
11.2 Joining Tables . 74
11.3 Joining Tables Using Fuzzy Match . 76
11.4 Analyzing Resulting Tables . 78

3

About This Manual

The purpose of this manual is to introduce new users to Picalo. It begins by explaining
the Picalo philosophy, continues with a best practices model, and then exhibits tutorials
for different Picalo functions. This manual is the first stop for new users. So if you are new
to Picalo, congratulations – you are in the right place!

This manual is only the beginning of your journey in Picalo. This program can do many
things that are beyond the scope of this introductory manual – as you use Picalo, you’ll
discover its many abilities. Because Picalo is based in the standalone Python language, it
inherits many capabilities, such as scraping of web pages, parsing of email and log files,
and extensibility.

Once you feel comfortable with this manual and with Picalo basics, read through the
Advanced Picalo manual for additional capabilities.

A Moving Target

This manual is current as of Summer, 2006, or Picalo 3.0. Since Picalo is a work in
progress, it is constantly improving and changing. Therefore, the dialogs in the program
may be slightly different that what you see in this manual due to change in the program.
We’ll try to keep the manual updated with the program, but we simply do not have enough
time to update the manual in perfect unison with the program. Since the Picalo program
itself is the main priority, the manual may be slightly behind the actual features or user
interface of the program.

Acknowledgement

I’d like to thank my Information Systems 413 course students for their help in the tutorials
contained in this manual. Many of the tutorials were written exclusively by them, and
others are combinations of my own writing with text or graphics from various students.

4

Chapter 1

Introduction

Welcome to the world of Picalo, a collaborative, open-source effort to produce a data
analysis application suitable to auditors, fraud examiners, data miners, and other data
analysts! Picalo specializes in data retrieved from corporate databases, such as employee
records and sales records, but it can be used generally for many different types of analyses.

The foremost goal of Picalo is to create a worldwide repository of fraud detection and
analysis routines called Detectlets. Technical users of Picalo are under a (friendly) moral
obligation to codify their analyses as Detectlets and submit them to the central web site.
You can choose whether to provide your Detectlets for cost or for free. Appendix ??
details how to write detectlets. Certainly, learn the Picalo framework first. But once you
are comfortable with it, contribute to the effort.

If you have even limited skills in programming, please consider submitting a few De-
tectlets. Together, we’ll create a set of routines that cover the entire analysis field: from
fraud detection to data mining to statistical analyses. We’ll create a repository of routines
that is unrivaled by any single company or organization. This is the spirit of open source
that I hope you’ll find invigorating and satisfying.

First, a little background on Picalo. For years, I used many different applications
for analysis – Excel, Paradox for DOS, Visual Basic, Microsoft Access, ACL, IDEA, Post-
greSQL, Numeric Python, SAS, and many others. Each of these applications had strengths,
but none was specifically written for analysis of corporate data or for serious data mining.
Some were generic databases; others were audit-oriented or statistical applications. When
I went searching for an analysis application, I had the following requirements:

• Cross platform so analyses could run on Windows and Mac OS X laptops as well as
corporate Unix servers.

• Routines specific to the detection of fraud and corruption.

• Support for routine automation in a robust, powerful (yet easy to use) language.

• Ability to analyze huge amounts of data.

• A way for technical analysts to support non-technical analysts without the typical
“have the techie do all the hard work” result.

5

• Both a graphical user interface and bare-bones, console interface.

Finding no product that suited my needs, I developed Picalo, an open architecture that
all can contribute to and use. Picalo is conceptually split into three levels of routines: Level
1) foundation routines that support basic analysis steps (but are not specific to corruption
or fraud); Level 2) fraud routines that combine level 1 routines in intelligent ways so non-
technical users can perform powerful analyses; and Level 3) automatic discovery of fraud
and corruption using expert system rules applied to Level 2 routines.

Picalo is currently focused on analysis for fraud and corruption detection. However, it
is an open framework that could actually be used for many different types of data analysis:
network logs, scientific data, any type of database-oriented data, and data mining.

1.1 A Short FAQ

This short list of “frequently asked questions” should answer questions you may have about
Picalo, its purpose, and its relationship to other software packages.

1.1.1 Why Picalo?

Why not use ‘your favorite app here’ to do analyses? Why use Picalo instead? Picalo may
or may not be the right choice for what you are doing, depending upon your goals. The
following are features of Picalo that seem somewhat unique:

• Picalo is an open framework. Users can either use the built-in routines or write their
own. Those who write their own can share their routines with others in the Picalo
community. The goal is to create a large set of analysis routines that meet many
different needs–on a scale that a single company could never do.

• Picalo’s Detectlet framework allows those with scripting interest and ability to create
wizard-based routines for others in their organizations. This helps bridge the gap
between power users and others.

• The philosophy of Picalo is to help users learn how to script. Data analysts who
know basic scripting routines (for loops, for example), are more efficient and effective
than those who do not. Picalo shows you the script code for everything you do in the
GUI, and it includes a function composer to help you create function calls.

• Picalo includes advanced analysis routines not found in competing products. For
example, it supports grouping by a number of days for analysis of labor and time
card data. Picalo can also automatically group records to achieve a specified degree
of smoothness in data.

• Picalo’s scripting is based in Python, a powerful and easy-to-learn computer language.
Rather than creating its own language (like competing packages do), Picalo rises on
the shoulders of an extremely well-done language. You can download any of thousands
of Python libraries from the Internet to use in your analyses.

6

• Picalo runs on Windows, Mac OS X, Linux, and many other systems. Most competing
data analysis applications run only on Windows.

1.1.2 What is the Picalo philosophy?

The Picalo community believes that data analysis is best done through scripting. Every-
thing in Picalo is designed to help you learn basic scripting techniques so you can become
more productive. Picalo certainly includes a powerful graphical user interface, but the
focus of the toolkit is to help you write powerful, 10- to 20-line scripts.

Picalo is based in open source principles. This doesn’t mean the designers can’t make
money with Picalo, it just means that the software code is open for others to fix bugs, code
review, and improve upon. Profits should be made in using the software (on the job or in
consulting practice) rather than in selling the software.

1.1.3 What is Picalo’s relationship to ACL and IDEA?

Picalo is a competitor. ACL and IDEA are two of the most popular data analysis applica-
tions used in corporate data analysis. Each has unique features and abilities. The scripting
ability of each is great. However, both applications are primarily audit applications rather
than general data analysis applications. Picalo contains routines that can be used in many
fields, including auditing, fraud detection, and other areas.

Picalo’s Detectlet features differentiate it from ACL and IDEA. The end-goal of Picalo
is to create a worldwide repository of Detectlet’s that thousands of different anlayses using
a wizard interface.

One of the primary differences between these applications and Picalo is the latter is
open source. Users can help solve bugs, contribute new modules, and do analyses not
possible in closed-source software.

Finally, Picalo is built upon Python, a full-featured, mature programming language.
While ACL and IDEA define their own languages, Python has existed for over 10 years.
Modules to do all sorts of things have been contributed by programmers around the world.
For example, the regular expression module provides powerful text searching not found in
many off-the-shelf products – since it is part of the core Python language, you can be sure
it is well tested, efficient, and mature. Python is not only simple, but it is also extremely
powerful.

1.1.4 Why not use MS Excel?

Microsoft Excel (or, insert your favorite spreadsheet here) has become a powerful, mature
application for number analysis. Spreadsheets are widely known and used, and they are vi-
sual in their analysis. However, spreadsheets are best suited for ad-hoc analysis rather than
formal database-oriented analysis. For example, Excel is an excellent choice for tracking
your investments or calculating a home mortgage schedule. It is less suitable for querying,
stratifying, summarizing, joining, matching, trending–routines Picalo specializes in.

7

Picalo is meant to work with data retrieved from large databases; Excel is meant to
work primarily with small sets of numbers in free-form. While Excel can only handle
about 65,000 records, Picalo can handle millions upon millions of records (limited only by
available memory in your computer).

A simple example illustrates this purpose1. Most home owners don’t own expensive
woodworking equipment, such as saws, routers, and so forth. Instead, they use smaller,
nonindustrial tools for their weekend jobs like fixing their fence. However, professional
carpenters do own expensive equipment. They are willing to invest time and money in
industrial tools to do their daily work with. Excel is a general purpose tool meant for the
weekend analyst. Picalo is meant for the professional. It’s startup cost is higher, but it
provides economies of scale not possible with ad-hoc programs like Excel.

1.1.5 How does Picalo compare with EnCase or The Forensic
Toolkit?

EnCase and TFK are really different products with different purposes. They are useful
to inspect a computer, gather data, and document evidence gathering. Picalo is a data
analysis package. It assumes you’ve already gathered the data into a data source and need
to combine it in different ways to generate useful information.

1.1.6 What is Picalo’s relationship to Numerical Python/Numar-
ray/SciPy?

The two are different, with different goals and different communities. Numerical Python is
geared toward the scientific community whereas Picalo is geared towards the corporate data
community. NumPy specializes in array storage and representation, and its functions focus
on array manipulation, math, and so forth. Most NumPy routines assume you are working
with large matrices of numerical data. The matrices do not normally contain empty cells,
and the functions are focused on scientific applications.

Picalo specializes in database connectivity, representation of data in tables, and data
analysis routines. While both arrays and tables are similar, the focus of the two projects
(and resulting data structures and functions) are quite different. Picalo works with database-
type data, such as text, addresses, salaries, and so forth.

1.1.7 What is Picalo’s relationship to Python?

Picalo is built in Python the same way a book is built in English or some other language.
More technically, Picalo is a set of modules, functions, and routines built on top of Python.
A casual reviewer of Picalo may not see the power of extending the Python language.
Python alone is a very powerful data and text analysis platform – Picalo adds the Table
type and many data analysis functions to the core Python language.

1This example comes was first given in the sed and awk book published by O’Reilly.

8

Because Picalo is built in a professional language, anything you can do in Python you
can do in Picalo (this turns out to be a lot!). There are thousands upon thousands of
Python routines available for free download from the Internet.

1.1.8 Why Python (instead of VB, Perl, Java, .Net)?

Because it’s better, of course! :)

1.1.9 Why open source?

This question actually has several answers. The surface level answer is because competing
data analysis applications charge thousands of dollars per year for software that is not
terribly difficult to write.

Another answer is significant money can be made using the software (on the job or as
a consultant) rather than selling the software. Instead of paying a software tax each year,
why not create a platform that does exactly what the community needs? Thousands of
programmers from around the world can contribute thousands of data analysis routines
that all can use. There’s plenty of money to be made in the use of the software in our
work. Why not collaborate on our tools?

Consider why businesses create software: to make money. They do things because there
is a business case. Most business decisions are made based upon the return (i.e. money)
they will bring. In a perfect world, software decisions should be made because of tech-
nical reasons, not business reasons. Normally, business and technical motivations are in
line: good software usually sells well. But this is not always the case. Too many software
packages have been ruined over the years because companies gave in to the almighty dol-
lar/euro/etc. Software bloat, unstable software, and market–driven release dates are well
know problems in the software development world.

Open source is different. Decisions are made for their technical merits rather than
for their monetary return. For example, most open source projects release new product
versions when the products are tested and ready for use. Most projects don’t even give a
release date – they simply say, “it will be released when it’s ready”. Contrast this with
commercial software packages. Release schedules are usually driven by marketing reasons
(when the competition will be releasing, when the market is ready, etc.). The result is
often programmers are pushed by marketers and executives to push products out before
they are tested and ready.

Please note that this philosophy is not an argument against free market economies.
Competition is a good thing. Choice is a good thing. It is simply an argument for com-
petition in the use of the software (consulting, etc.) rather than competition in the tool
development. Creating software is different than the creation of most products, for ex-
ample constructing automobiles. The former can be done with almost no investment up
front, has almost no distribution costs, and benefits from collaborative development. The
latter requires considerable investment to produce even one product and has significant
distribution costs. Software is a different type of product and should be treated as such.

9

Another example is the feature creep seen in many commercial products. In order
to continue making money, companies must release new versions every two years or so.
Once a product matures, companies almost have to invent needs their new features solve!
Consider Microsoft Word – basic word processing hasn’t changed much since the beginning
of GUI applications. However, Microsoft continues to upgrade Word with features like the
infamous “clippy” to give their users reasons to upgrade, even though most users still only
need the basic features. If a company declared their product “completed”, their money
stream would quickly dry up.

Finally, Picalo is open source because it draws upon many different products, such as
Python, mx.DateTime, the Gadfly database, and so forth. It is one more contribution to
an ever-growing selection of excellent, free software.

1.1.10 Where does the name Picalo come from?

(Personal note from Conan Albrecht, who named Picalo) I do a lot of programming at
home. On the day I started Picalo, my two oldest girls (six and four at the time) were
dancing around my home office singing the jingle, “Daddy, Daddy, there you go, let us see
you piccolo (i.e. dance)!” At this point in the song, I had to get up and dance for the next
minute or so. I thought it was cute, so I searched the Internet for variations on the spelling
of the word. I was happy to find that Picalo (and its variants) didn’t have any negative
connotations and were not widely used. I finally settled on the “picalo” spelling. The term
has no relation to the piccolo musical instrument or other variations and uses of the word.

1.1.11 What are Picalo’s Limitations?

Picalo is relatively new software. It has several limitations, a few of which are listed here:

• Picalo may still have bugs, especially in the GUI, that have not been found by the
users. You should always double check your analyses, print control totals, and list
intermediate results to ensure that your analyses run the way you expect. (Although
you should do this regardless of the software package.)

• Picalo has no warranty, support, or guarantee. It is released with the hopes that it
will be useful, but you are responsible for anything it does to your computer, your
data, or anything else. Although there is no formal support, open source projects
like Picalo have shown that user support for one another is usually superior than
company support.

• Unless you write scripts to use database results intelligently, Picalo loads all data into
memory for analysis. Your computer’s memory may limit the number of records you
can analyze. In practical use, Picalo has been shown to analyze millions of records
easily, so this limit is quite high.

10

1.2 Acknowledgments

Picalo is built upon the shoulders of many great projects. Thousands of individuals have
contributed time and energy to these projects, and the Picalo effort is grateful for their
work. These are listed as follows:

• Python: http://www.python.org

• wxPython: http://www.wxpython.org

• mxDateTime: http://www.egenix.com

• pyODBC: http://pyodbc.sourceforge.net

• psycopg2: http://initd.org/projects/psycopg2

• MySQLdb: http://mysqldb.sourceforge.net

• Statistics package pstat.py by Gary Strangman

• Nuvola Icon Set by David Vignoni: http.icon-king.com

• Matplotlib: http://matplotlib.sourceforge.net

• pyExcelerator by Roman V. Kiseliov

1.3 License

Most of Picalo is released under the GNU General Public License (GPL). The GPL is a
restrictive, open source license. I’ve released this package under the GPL to protect it. You
can download the source code comes from the Picalo webiste (http://www.picalo.org);
you are encouraged to improve and add to the application.

Detectlet libraries can be released under licenses other than the GPL. Since Detectlets
will be built by companies, organizations, and individuals, it is up to the developers to
decide whether to sell, open source, or even public domain their routines.

The restriction is that you cannnot use any Picalo code in your own products unless
those products are also released under the GPL. If you are using a closed-source license
or even one of many incompatible open source licenses, you cannot use Picalo code. The
license protects the code from being “stolen” by any individual or company.

This short description is obviously an overgeneralization of the license; please see the
LICENSE.TXT file for more information.

11

http://www.python.org
http://www.wxpython.org
http://www.egenix.com
http://pyodbc.sourceforge.net
http://initd.org/projects/psycopg2
http://mysqldb.sourceforge.net
http.icon-king.com
http://matplotlib.sourceforge.net
http://www.picalo.org

Chapter 2

A Tour of Picalo

This section introduces you to the Picalo GUI. It is designed to be similar to other programs
you may have used, such as Excel, ACL, or Access.

2.1 The Picalo Workspace

The workspace, shown in Figure 2.1, is separated into three primary areas: the object
tree/disk explorer, the table/script tabs, and the shell. These are described in this section.

2.1.1 Object Tree

The object tree keeps track of all database connections and tables you’ve created in each
session. Double-clicking a table in the list brings up a spreadsheet view in the tab section
on the right.

Note that tables in the object tree are not automatically saved and are deleted when
the program closes. This is done because many routines create hundreds or even thousands
of subtables. Saving each of these to disk is not practical or desirable. Be sure to save the
tables you wish to use again.

2.1.2 Table/Script Tabs

The main section of the screen is a tab browser of the tables and scripts you have open.
Tables show in a spreadsheet-like view. You can use this view to add/remove/modify
columns and types, edit cell values, filter data, and view data.

Scripts show in editor files and have the typical commands of cut, copy, paste, undo,
and redo. See Section ?? on scripting for more information on scripts.

2.1.3 Shell, Command Log, and Script Output

The shell allows you to type commands one at a time to produce results–it’s like running
a script one line at a time. In addition, when you run a full script in Picalo, all of the
variables created in the script are available in the shell at its completion. This allows you

12

Figure 2.1: The Picalo Main Screen

13

to perform additional commands or inspect result data without having to rerun the entire
procedure.

Everything you do with the Picalo menu and dialogs just translates to a call in the
shell. As you navigate the program dialogs, watch the shell to see how Picalo is doing its
work. Over time, you’ll learn what each command does and become more familiar with
the shell. You’ll pobably find that working from the shell is faster than working using the
menues.

The interface and the shell are two-way, meaning that anything you change in the
interface (such as modifying a cell value in a spreadsheet view) also changes in the shell
variables. In like manner, anything you change in the shell variables is immediately reflected
in the interface.

The shell is an excellent place to perform ad-hoc analyses or to test commands. Its use
is described in the Advanced Picalo manual.

2.2 Working With Picalo Commands

There are four ways to run Picalo commands in your analyses. These are described as
follows:

• Menu and Toolbar: The Picalo menu (and toolbar buttons) provides access to
dialogs that guide you through each function. These functions are described in Section
2.2.1 below.

• Function Composer: The Function Composer is a graphical way to construct Picalo
command calls. It is provided for medium to advanced users.

• Shell: The shell, shown at the bottom of Figure 2.1, allows you to type Picalo script
commands one line at a time. It is an excellent way to perform ad-hoc analyses or
test command calls. The shell is described in Section 2.1.3.

• Scripts: Scripts are the most powerful interface to Picalo’s commands. Scripts allow
you to use programming constructs like for loops and if statements to fully automate
different analyses.

2.2.1 Menu and Toolbar

The Picalo menu options and related toolbar buttons provide access to dialogs that guide
you through various Picalo functions. Each time you select an option from the menu, Picalo
shows you the related command in the shell. In fact, the menus and dialogs actually just
construct Picalo commands and run them for you in the shell.

File Menu The file menu provides manipulation routines for 1) Tables and 2) Databases.
Rows and columns can be added to tables, table properties like column types can be
modified, database connections can be created, and database queries (resulting in tables)
can be run. Also, preferences/options for Picalo can be set in this menu.

14

Edit Menu The edit menu contains the standard functions and features of most edit
menus: Copy, Cut, Paste, Find, Replace, etc...

Data Menu The data menu provides functions that manipulate the data within tables.
Different methods of stratification allow you to separate a table into a list of subtables.
For example, you could separate a sales transaction table into separate tables for each sales
clerk.

Summarization allows you to recombine stratified tables using summary functions like
sum, average, standard deviation, counts, and so forth. Summarization is useful to smooth
the time axis during trending (see the example in Section ??), calculate the total pur-
chases per purchaser during the period, or find which vendors are being used the most.
Summarization is similar to GROUP BY in structured query language.

The join options allow you to join tables together. Picalo’s join features are much slower
than database query joining, but they are much more powerful and flexible. For example,
rather than simply joining where values match, Picalo can join tables based on fuzzy text
matching and custom expressions. With custom expressions, the ways you can join tables
are limited only by your creativity.

Analyze Menu The analyze menu provides functions that run specific analyses. The
first set of options on this menu provides initial views into data sets. These should when
you first look at a data set. Descriptives provides basic statistical descriptives on a table
like counts, standard deviations, and column totals. Digital analysis uses Benford’s law of
numbers to evaluate whether column values are “natural” or not. See Section ?? for more
information.

The Find submenu provides audit procedures of finding unordered values, duplicate
values in columns, and gaps in sequence. These functions are useful in discovering duplicate
invoices or payments, missing documents, or sorting problems.

The Find submenu also helps you find matching and nonmatching columns in tables.
While SQL matches records easily, it only partially supports nonmatching. In addition,
matching does not join tables together – it only highlights matching records. An example of
nonmatching analysis is to find vendors used for purchases who were not approved vendors.
Finding the rows in the purchases file that do not have values in the approved vendor file
highlights these transactions (see Section ??).

The Select submenu allows you to select certain rows from tables to analyze. It is useful
to “filter” tables before analysis and to find within tables.

The Outliers submenu helps you discover outliers in record sets. While many methods
of finding outliers exist, the zscore calculation is one of the simplest and best. With these
options, you can add a zscore column, select outliers, and select nonoutliers.

The Trending submenu provides different methods of discovering the direction of a
trend. While any human being can look at a graphed trend and know its direction, these
methods allow the computer to discover direction. This is useful when you have thousands
of trends to analyze and want the computer to do the preliminary analysis for you. For
example, suppose all of your employees have corporate credit cards. You want to discover
employees who exhibit an increasing trend in spending over a three month period. You

15

Figure 2.2: The Function Composer

first stratify the credit purchases table into subtables, one for each employee. Using one
of the slope algorithms on this menu (regression, for example) and a for loop, you run a
regression on each subtable and calculate the slope. You sort the results by slope and look
at those tables with the highest slope values.

Detectlets Menu Picalo’s Detectlets are one of its greatest strengths. Detectlets are
wizard-driven, step-by-step guides that walk you through different analyses. Upon startup,
Picalo automatically discovers the detectlet modules you’ve installed and makes them avail-
able on this menu.

If you want to do powerful analyses within a simple, wizard interface, Detectlets are
the solution. Be sure to read Chapter 3 on Detectlets for more information.

Script Menu The script menu provides options to create, modify, and run scripts. Script-
ing is the subject of the Advanced User manual.

Function Composer

The function composer, shown in Figure 2.2, is like a wizard that helps you construct Picalo
commands. While only some of the available functions are available from menu options,

16

every Picalo command can be accessed in the Function Composer. The Function Composer
is a little more difficult to use than the menu options, but it is much more powerful.

The Function Composer is an intermediate step in learning the direct commands of
Picalo. It gives a short description of each command, a description of each parameter you
need to send, the return value, and one or two examples of its use.

2.3 Expressions

Expressions are mathematical formulas that run calculations on rows, tables, or columns.
Expressions are given in Picalo as strings, such as "id+1". Expressions are used to define
the value of a new, calculated column or to summarize a subgroup of records in a table.
They are used in most Picalo functions.

Expressions provide you with total flexibility and control in joining, selecting, stratify-
ing, and most other analysis routines in Picalo. Since expressions can be more difficult to
write, Picalo also includes shortcuts to expression writing, such as matching by value or
stratifying by date.

Some variable names are assumed inside of expressions. Suppose you are selecting
records from a table using an expression, Picalo needs to evaluate your expression for every
record in your table. It will iteratively call your expression, starting with record 1, then
record 2, and so on through the end of your table. For each record, the expression is
evaluated. For example, the expression price > 5000 will select all records with the price
column value over $5,000.

17

Chapter 3

Detectlets

Detectlets are one of Picalo’s greatest strengths. They provide a wizard-based, step-by-
step guide through complex analyses. Normally, the following tenants are orthogonal to
one another:

• Powerful analyses are, by definition, complex. As is stated in other areas of this
manual, complex routines normally require scripting. This means that users must
learn Picalo’s scripting language, its available functions, and their parameters.

• Most analysts don’t want to learn the complex algorithms and concepts, such as
scripting. In a perfect world, we’d all learn how to script and write detailed algo-
rithms. But the reality is that most analysts do not have the time or interest to walk
the learning curve.

Detectlets solve this paradox by allowing the power users to support the regular users.
In most organizations, there are at least two or three technical individuals who are willing to
scale the learning curve required to create powerful and complex analyses. These individuals
use the declarative Detectlet language to prepare custom wizards for their organizations.
Once these modules are installed on other analysts’ computers, they are widely available
throughout the organization.

When a Detectlet is run, it first gathers the information required to run the analysis
function. Once the information is gathered and verified, the analysis function is called.
Detectlets always create a table (or list of tables). Upon successful completion, an ”Inter-
preting the Results” window displays that helps you interpret the resulting table.

Picalo automatically detects any Detectlets installed on your computer. Be sure to look
through the available Detectlets in your installation as they provide powerful analyses at
the click of a button. The Detectlets menu provides access to these routines.

If you are technically skilled, please help create additional detectlet libraries! Picalo
provides the foundation for a worldwide repository of detectlets for all types of domains. It
is impossible for the Picalo designers to know what fraud routines work in every country,
every domain, and every business. While some fraud schemes seem common to most areas,
others are highly specialized to very specific medical fields, areas of the world, etc.

If you have any technical skills at all and are using Picalo in your work, you are under
a (friendly) moral obligation to codify your analyses as Detectlets and submit them for

18

others to use. If each user submits just a few well-thought-out detectlets, we’ll all benefit
and be more effective in our work. Appendix ?? details the process of writing Detectlets.

3.1 Example Detectlets

The standard build of Picalo comes with a few example Detectlets (currently related to
Benford’s Law of numbers. These Detectlets provide examples of additional Detectlet
libraries that can either be downloaded or purchased and added to Picalo. Individuals and
companies that develop Detectlets are free to license their libraries as they wish (free, open
source, or charge). Available libraries are listed on the main Picalo web site.

3.2 Detectlet Installation

To use additional Detectlet libraries, you must download and install them. Installation of
new libraries is easy. To install new Detectlets, select Detectlet — Install from the Picalo
menu and browse to the .py or .zip file. Most Detectlet libraries are provided as .zip files.
The Detectlets will be immediately available from your menu – there is no need to restart
Picalo.

19

Chapter 4

Best Practices Usage

I am often asked for the “best practices” method of using Picalo. While your needs will
certainly be different than mine, I can give some indication of what has worked best for me
and other Picalo users. Let me first describe my purpose for programming and for using
Picalo. I use Picalo to data mine large corporate databases for fraud and irregularities.
These databases are often very large and require a significant amount of processing. I do
not modify the data very often – I normally see them as a read-only data source.

The best practices architecture is shown in Figure 4.1. This diagram shows Picalo being
used to query corporate data sources and populate a data warehouse, where Picalo is then
used for analysis. Other applications are also used to present and query data. The process
is as follows:

1. The first step is to create a data warehouse.

• You should set up a server, which is simply a computer with a database like
PostgreSQL, MySQL, SQL Server, or some other production database. In par-
ticular, PostgreSQL and MySQL are free; MySQL is quite easy. However, any
database works. For beginning users, you can use Microsoft Access.

• Based upon the types of analysis you want to do, design a database that will
support your needs. Learn from your database help manuals how to create
databases, tables, and queries.

2. Using ODBC or Picalo’s data import wizard, transfer the appropriate data from the
corporate server to your data warehouse. ODBC is set up in the Windows control
panel. Once you query the data into a Picalo table, you can use Picalo’s Upload
Table feature to upload the data into the data warehouse. If you are using Microsoft
Access, you can simply use Access directly to query the data from the corporate
server to your data warehouse.

3. Once the data are in your warehouse, you don’t need to worry about corrupting
the source data. Connect Picalo to your data warehouse using ODBC; use queries
and Picalo’s analysis routines to complete your analysis. While Picalo is a powerful
program, each software package has unique capabilities. Other programs, such as MS
Access, Excel, and Crystal Reports, can also be useful.

20

Corporate ServerData Warehouse

Analysis, Reports

Picalo
MS Access

ACL
IDEA
Excel

Crystal Reports
others...

SAP, Peoplesoft, Oracle
Transaction System

Flat Files

PostgreSQL
MySQL

SQL Server

2

1

3

Set up a data warehouse

Using ODBC or data import, transfer required data from source to your data warehouse

Using Picalo and other applications, analyze and prepare reports

1

2

3

Figure 4.1: Best Practices Use of Picalo

Note from the process above that Picalo’s native file format, .pco, is not used directly.
Use Picalo’s native format for ad hoc data storage and temporary holding. Normally,
data warehouses using MS Access, MySQL, or PostgreSQL hold your data. Realize that
Picalo’s primary function is analysis. It is most powerful when paired with a database that
specializes in data storage, quick access, and powerful queries.

21

Chapter 5

Picalo Preferences

In this tutorial, you’ll learn how to change the preferences in Picalo. This tutorial is
structured in a participatory manner – it expects that you have Picalo installed and that
you’re following along with your computer.

5.1 Chapter Learning Objectives

1. Access general preferences

2. Disable / Enable the splash screen at startup

3. Disable / Enable the automatic update feature

4. Change the prefered language

5. Add commands to run at startup

6. Access the Script Editor

7. Change Font Properties

8. Tab settings

9. Method Properties

5.2 Access General Preferences

General Preferences allow you to customize Picalo to better meet your needs.
To access Picalo’s general preferences:

22

Access Picalo Preferences

1. Select File, Preferences.

2. The Preferences” dialog comes up.
Displayed are general preferences.

5.3 Disable Splash Screen

When Picalo starts, a splash screen is displayed while the program loads.
The splash screen looks like this:

Splash Screen

23

1. This image is displayed every time Picalo
is started

Some users choose to disable the splash screen to speed up the loading of Picalo.
To disable the splash screen:

Disable Splash Screen

1. Click the check box next to ”Show splash
screen at startup”. When finished, click
the ok button.

You can re-enable the splash screen at any time by re-checking the box.

5.4 Automatically Check for Updates

When Picalo starts, the program automatically connects to the internet and checks for
software updates. If updates are found, Picalo will download and install the updates
to insure your software is current and working its best. You can disable Picalo from
automatically checking for updates.

To disable automatic updates:

24

Disable Automatic Updates

1. Click the check box next to
”Automatically check for updates”.
When finished, click the ok button.

You can re-enable automatic updates at any time by re-checking the box.

5.5 Change Preferred Language

You can change the preferred language in Picalo.
To change the preferred language:

Change Language

1. Choose the desired language from the
”Preferred Language” drop down box.
When finished, click the ok button.

25

5.6 Add commands to run at startup

When Picalo starts, commands added to the ”Commands to run at startup” text box will
automatically run. By using this feature, you can make desired actions occur each time
Picalo starts. For example, suppose you want to create a simple table each time you start
Picalo. You would put this into the startup commands in preferences:

1 mytable = Table ([’ id ’ , ’name ’] , [[1 , ’Homer ’] , [2 , ’Marge ’]])

Now, each time you start Picalo, you get this table automatically. You can do the same
with loading tables from disk, setting up database connections automatically, etc.

To add commands to run at startup:

Add commands to run at startup

1. Click in the box entitled ”Commands to
run at startup”. Enter the desired
commands and click ok when finished.

5.7 Access the Script Editor Preferences

To access the script editor preferences:

Access Script Editor

26

1. Select the ”Script Editor” preferences tab
by clicking on the tab as shown. You now
have access to the script editor
preferences

5.8 Change Font Preferences

You can edit font type and size in Picalo. You can also change the font from antialiased
to non antialiased. Any changes to font type will be applied to the font displayed in the
scripting window.

To change font preferences:

Change Font Preferences

1. Select the font type from the ”Editor
Font:” drop down box. Select the desired
font. You can also change the font size by
entering the size in the ”Size” text box.

27

2. You can change the font from antialiased
to non antialiased by clicking the check
box entitled ”Use antialiased fonts”.
Antialiased fonts are smoother and more
visually pleasing as shown in the picture.

When you are finished changing the font properties, press ok. Any changes made to the
font will be applied to the font displayed in the scripting window.

5.9 Tab Preferences

Each time the tab key is pressed, the cursor will jump a certain number of spaces. You can
set this number in the ”Tab Width:” text box.

To change tab properties:

Change Tab Preferences

1. Enter a number in the ”Tab Width:” text
box. This number will be the number of
spaces the cursor moves in the script
editor when the tab key is pressed.

When you are finished changing the tab preferences, press ok.

28

5.10 Method Preferences

When scripting in the scripting window, available methods are automatically displayed
while typing. Method help is also displayed. These features are to help you script more
efficiently and acurately. You can disable these features if you like.

To change scripting method preferences:

Change Method Preferences

1. To remove the automatic method and
help display functionality, click the check
boxes that say ”Automatically show
available methods when typing”, and
”Automatically show method help when
typing.” You can reactive these features
by re-checking the boxes.

When you are finished changing method preferences, press ok.

29

Chapter 6

Introduction to Picalo Tables

This tutorial explains the primary data structure in Picalo: the table. Tables are the first
thing you should try to understand as you learn Picalo because all functions and routines
work on tables of data. Tables are very similar to spreadsheets in applications like MS
Excel – they are two dimensional grids made up of columns and rows. In this tutorial,
you’ll learn how to work with Picalo tables.

6.1 Learning Objectives

1. Understand the table structure and the PCO format

2. Load and save tables from and to disk

3. Sort tables by one or more columns

4. Edit data, add rows, and remove rows

5. Close tables with varying degrees of permanence.

6. Define rows and columns and understand their differences

7. Insert and delete rows

8. Insert and delete fields (or columns)

9. Define field properties

10. Save table property changes

6.2 Picalo Tables

Picalo tables are two dimensional grids of data. The data can be of any type, and all cells
in the table do not have to be the same. With a few exceptions (covered elsewhere), you

30

should keep your data in tables because almost all functions and routines in Picalo expect
tables for input and usually produce tables for output.

In some ways, you can think of tables as spreadsheets – similar to the way you might
use MS Excel. Indeed, many times you’ll bring data into Picalo from Excel, Access, or
similar data source because Picalo is an primary analysis application rather than a data
entry application. We assume you know the basic principles of working with spreadsheets.
However, Picalo tables have some important differences from spreadsheets. These are
described as follows:

• Each row (also called a record) in a Picalo table usually represent a real world thing,
such as a person, a transaction, information about a movie, or a weather reading.
Each record is an individual entry. If you want to hold information about 20 movies,
your table will have 20 records.

• Columns (also called fields) in Picalo tables are always named and usually hold the
same type of data. If your table holds information about movies, the first column
might be the movie title, the second column might be the release year, and so forth.
The column names are not records in the table like they would be in a spreadsheet.
They replace the ‘A’, ‘B’, ‘C’, etc. as the titles of the columns.

• Picalo tables have only as many columns and rows as you have data for. In contrast,
spreadsheets always have 65,000 rows and A-IV columns. If you want to add another
record to a Picalo table, you first have to append a new row to the end of it.

• Picalo tables normally hold large amounts of data with limited calculations. Spread-
sheets specialize in calculations between cells, and they are often used for tasks like
loan amortizations or tax schedules. In contrast, calculations in Picalo are normally
done on entire columns rather than individuals cells. For example, one column might
contain the birth dates of all employees in a business. In Picalo, you might add a
calculated column that returns the age of each person, based on today’s date and the
value in their birth date column.

Each Picalo table can theoretically hold up to 2.1 billion rows and 2.1 billion columns,
but most users cannot reach this theoretical limit. The primary limitation on table size in
Picalo is your available memory in your computer. The realistic limit on number of rows
and columns depends upon the size the data in each cell and the ratio of columns to rows1.
Practically, you should expect to hold at least hundreds of thousands of records with a
relatively modern computer.

Tables are always named in Picalo. When you load or create a table, Picalo will ask
you to enter a name that it can be referenced by in dialogs, routines, and other operations.
This name is usually similar to the filename the data was loaded from, but you can set it
to anything.

1If you need to work with huge tables (in the hundreds of millions to billions of records range), you
should store your records in a production database. Picalo’s Database module can iterate through records
individually rather than load entire tables into memory at once.

31

In order to enable scripting capabilities with your tables, Picalo imposes some lim-
itations on the format of table (and column) names. Table names must start with an
alphabetical character, such as A, b, or z. The remaining characters in the name can be
any letter, numbers, or underscore. Tables names are case sensitive, meaning that myTable
is different than MyTAble.

The following are valid table names:

• mytable

• MyTable

• emp records

• emp records15

• weather12data

The following are invalid table names:

• 7eleven (starts with a number)

• mydate/6 (includes a slash)

• Dark Woods (includes a space)

These same rules apply to column names.

6.3 Loading and Saving Picalo Files

Picalo’s native format, .pco, is a cross-platform file format that saves tables to disk. This
format is readable only by Picalo, but it saves all information related to the table, including
column names and types, cell data, and column calculations. Files saved on Picalo for
Windows can be opened in Picalo for Mac or Picalo for Linux and vice versa.

The best way to save data in Picalo is to use a production database like MS SQL Server.
These databases provide features like data security, searching, and indexing that cannot
be matched by any desktop product. If you do significant work with Picalo, we suggest
that you invest the required time to set up a data warehouse using one of these databases
(check out the open source MySQL or PostgreSQL products). There is a tutorial dedicated
to databases.

So why include a native Picalo format? Because databases and data warehouses can be
difficult to set up and maintain, and many times these databases are overkill for smaller
projects. In these smaller situations, the .pco format is the perfect solution. While .pco
files can hold tables of any size, they are most efficient for smaller tables.

In addition to being cross platform and native to Picalo, .pco files are automatically
compressed to save disk space. This means that you do not need to ”zip” .pco files to email
(or otherwise transfer) them to colleagues. They can be sent easily and directly.

32

Load a Picalo Table

1. Select File, Open Table. The “Load
Table” dialog comes up.

2. Find the worldcupstats.pco file on your disk and click OK. This file ships with
these tutorials. After selecting the file, click OK in the “Load Table” dialog to finish
the dialog and return to Picalo.

3. The table should load into Picalo. This
table contains statistics from the World
Cup tournaments through the last
century. Note that the table is now listed
in the list of tables (left red circle) and is
showing in the table viewer (large red
circle). You can move around the data
with your mouse or cursor keys and edit
data in cells.

6.4 Sorting Tables

Picalo tables can be sorted to highlight the low or high values in a column. The easiest
way to sort a table is using the right-click menu, as shown in the following example.

Quick Sorting

33

1. Suppose you want to know which World
Cup had the most goals scored. With the
worldcupstats table open, right click the
GoalsScored column and select “Sort
descending”.

2. The table should now be sorted by the
number of goals scored, showing a high
number of 171 in 1998.

A more advanced way to sort is via the File menu. The sort option only appears in the
File menu if you are currently viewing a table. The following example shows this method
of sorting:

Advanced Table Sorting

1. Begin with the worldcupstats table
open. Select File, Sort... to bring up the
sort dialog, as shown in the picture. This
dialog lets you sort by up to three
columns.

34

2. Suppose we want to sort first by
GoldenGoals and then by OwnGoals.
Select these two column names, click the
‘Descending’ option, and click OK.

3. The table is now sorted by these two
columns.

When sorting tables, it is important that you pay attention to the data types of the
columns you are sorting on. Integers, floats, dates, and strings sort very differently. For
example, the following numbers are sorted in ascending mode: 4, 12, 22, 165. However, if
these values are typed as strings (rather than integers), the individual characters are seen
as text rather than as numbers. Therefore, the sequence sorts as ‘12’, ‘165’, ‘22’, ‘4’. See
the tutorial on data types for more information about column types.

A third way to sort is directly through the Shell with Python commands. This method
is the most powerful way to sort, but it is beyond the scope of this tutorial.

6.5 Editing and Adding Records

While Picalo is not a data entry application, it allow you to directly modify the data
and add or remove records. To edit data the data in a cell, double click it or simply
start typing in the cell. This behavior should be familiar to any reasonably-experienced
spreadsheet user.

To add or remove records in your table, use the icons in the toolbar or the options in

35

the File menu. Picalo will remove the row your cursor is currently on. When inserting a
new row, it inserts just before the current record. When appending a row, it adds the new
row to the end of the table.

Each cell in a new record is given the None value, which shows as <N>. This value
indicates the absence of data. See the tutorial about data types for more information about
this value.

6.6 Copying and Pasting Table Data

Data in tables can be copied and pasted in the normal way. In fact, one of the easiest ways
to transfer data from another application (like MS Excel) is to select the cells in the source
application, copy to the clipboard, and paste to an empty table in Picalo. Similarly, cells
can be copied from Picalo to other applications.

Note that when pasting data into Picalo, it starts the pasting at the currently-selected
cell. If you want to paste an entire table of values, your cursor needs to be on the top-left
cell. Picalo will automatically add as many records as needed for the pasted data. It will
not, however, add any columns to your table. Only as much data as will fit across the
columns is pasted, and the rest is discarded.

6.7 Importing Data

Data can be imported into Picalo in several other ways. While these methods are beyond
the scope of this chapter, they are listed as the following:

• An ODBC connection to a database, then query the tables into Picalo.

• Import an Excel file into Picalo using the data import wizard.

• Import a delimited text file (.csv, .tsv) using the data import wizard.

• Import any other type of file using Python directly. For example, the Python language
can import email messages into Picalo tables using the email module.

6.8 Closing Tables

Picalo tables that are loaded into the interface can be closed with varying degrees of
permanence. These are described as follows:

1. Closing the Table View Tab: When a table is visible in the interface, you can
close it by 1) selecting Window, Close from the menu, 2) right-clicking the name tab
for the table and selecting Close, or clicking the ‘Close Tab’ icon on the toolbar. This
option only hides the table from view; it leaves the table data in memory and leaves
the name in the table list on the left side. To reopen the table, simply double click
the table name in the list. Any changes (saved or not) you made to the table are
retained.

36

2. Closing the Table: While the previous method keeps the interface clean, it uses
your working memory, which you have a limited amount of. When you are finished
working with a table, you should remove it from working memory completely to make
room for other tables. To do this, 1) right-click the table name in the left-side list
and select Close Table, or 2) select File, Close Table from the menu. The table will
no longer be accessible until you explicitly load it again. You must have saved the
table (i.e. changes you have made to it in Picalo) to disk if you want to load the
table again in the future.

3. Deleting the Table: This method permanently deletes the table from working
memory and from disk. The table is deleted if you loaded the file from a .pco, .tsv,
or .csv file. Unless you have another copy of the table (such as on a backup disk),
the table is gone forever.

Closing a Table

1. This example shows how to remove a
Picalo table from memory but not from
disk (method #2 in the text). With the
worldcupstats table open, right-click the
name in the left-side list of tables and
select Close Table...

2. Picalo will prompt to ensure you want to
close the table and then remove the table
from working memory. The table is now
removed from the interface as well as
from the left-side list of tables. To reopen
the table, select File, Open Table as we
did earlier in this tutorial.

6.9 Rows and Columns: What are they?

Upon inspection of Picalo tables, one might best relate these to spreadsheet documents.
Tables are simply two dimensional grids of data. Just like a spreadsheet, the columns

37

and rows in a Picalo table represent different values. The rows (as indicated in the picture
shown below) are frequently called records and represent an actual real world person, place,
or thing. For example, if you had 436 employees working at GSL Inc., a Picalo table would
have 436 rows or records; each row representing one and only one employee.

Columns, on the other hand, are not representative of a real world person place or
thing, but rather one specific attribute to be defined for each specific person place or thing.
These columns define characteristics and data that can be generalized for each row (or
record). As a continuation of our example with GSL Inc. above, consider some general
characteristics shared by all employees. Likely each will have a name, a date of hire, a date
of birth, a department, an employee identification number, etc.... Notice that these specific
attributes are not specific to any one employee, but are general to all employees; in other
words, every employee has a name, a hire date etc.... For this reason, columns are often
called fields. These columns, or fields, are also shown in the diagram below.

Rows (records) and Columns (fields)

1. Rows are shown by the arrow at the left,
Columns are shown by the arrow at the
top.

6.10 Inserting and Deleting Rows

Users of the Picalo system will often find it necessary to insert or delete a particular record.
To continue our example above, perhaps a particular employee record in our GSI Inc. data
is missing, and so we will need to insert a place within the table to create a new record. On
the other hand, maybe on of the employee records is invalid, therefore necessitating that
we delete the record entirely from the table. The process of inserting and deleting records
from a table is really quite simple.

We’ll first address the topic of inserting rows into a table and afterwards address deleting
rows. Rows can be inserted at any place within the table. You may have your table sorted
alphabetically by name and many want to ensure that the record you add continues the
alphabetical pattern. In this case, Picalo allows you to insert the record in the exact
location you want the record to be placed in. In other cases you may want the record
added to the very bottom or top of the table; Picalo allows this as well.

The following diagrams are meant to be a step by step guide for inserting new records
into any Picalo table:

38

Inserting Rows in Tables

1. Identify the position at which you would
like to add a row. Right click on the
numeral in the row bar to the left. A
popup menu will appear allowing you to
insert a row above or below the currently
selected row. In this case, we’ll insert a
row above. If you wanted to insert at the
begining of the table, you would select
the first record in the table, then right
click on the number ”1” in the row bar,
then select the ”Insert Row Above”
option. Similar steps would be followed
for inserting a row at the bottom on the
table.

2. Notice that after selecting to create the
row, the new row appears. We can now
add attribute to this row by selecting
each particular cell and typing the desired
information. The letter ”N” appears by
default on newly created rows.

Now that we know how to insert a row into a table, the next topic to be discussed
is deleting unwanted rows. Perhaps after creating a row, we realized that we’ve made a
mistake and that we really don’t need a new row after all. Deleting an existing record
is very similar to creating a new record, except that we are going to select the ”Delete”
option instead.

The following diagrams are meant to be a guide for deleting records from any Picalo
table:

39

Deleting Rows from Tables

1. To delete a specific row, right click on a
specific row numerial, then select the
”delete option.”

2. A dialouge will ask whether you really
want to delete the selected row. Selecting
”Yes” will permenantly delete the
selected row. Selecting ”No” will return
you to the table without any changes.

6.11 Insert and Delete Fields (or Columns)

Not only is it valuable to know how to insert and delete records in Picalo tables, but
also how to add and delete fields (or columns) from tables. Inserting and deleting fields
is a slight more involved process, but is still very userfriendly and simple to understand.
Because each field is defining a particular attribute that is associated with each individual
record in the table, field require that a data type be specified. Specifying the data type for
an attribute ensures that the correct kind of data is being input into the attribute fields.
For example, we don’t want to have a Picalo user inadvertently enter a number in the field
that is suppose to contain an employee’s name; nor do we want an employee name in the
”Date Hired” field. To reduce the risk of error in data entry, data types are defined at the
time of each field (or Column) creation.

A list of these data types and a brief explanation of each is shown below:

• Sting = A series of text characters such as an employee name like "Bob White"

• Integer = A whole number such as 4 or -22(can’t be a decimal, but may be

negative)

40

• Floating Point = A number which can be a decimal such as 28.9047

• Currency = A monetary value

• Date = A specific date such as 2006-03-02

• Date Time = A Specific date and time

• True/False = Use in the case when an attribute must be either true or false

To insert a new field and declare its associated data type, you must go to the ”Table
Properties” interface. There are two ways to access the ”Table Properties” interface. These
two methods are shown below:

Accessing the Table Properties Interface

1. One way to access the Table Properties
interface is to right click anywhere on the
field bar at the top of the table, then
select the ”Table Properties” option.

2. The second way to access the Table
Properties interface is to simply click on
the ”File” menu on the menu bar, then
select the ”Properties” option as shown.

Once the Table Properties interface is displayed, the options to insert and delete specific
fields becomes available. The insertion and deletion processes are very much like those of
inserting and deleting rows shown in previous examples. For example, you may insert a
new field at the beginning, at the end, or anywhere in the middle. This is done by simply
selecting an existing field at which you want to insert a new field before or after, and
then select the approprate insert button (”Insert Field Above” or ”Insert Field Below”)

41

As stated previously, once a new field has been created, a data format will need to be
specified. At the time of creation, a new field is given the ”String” data format by default,
but should be adjusted by the user as appropriate. In addition, if the ”floating point” data
type is selected, the user has the ability to specify the precision of that decimal number
(e.g.; only 2 decimal points should be displayed).

The following diagrams serve as a step by step guide to insert and defining a new field
or column:

Inserting and Defining a New Field

1. After following one of the two methods
for access the Table Properties interface
shown above, the following screen will
appear. This is the Table Properties
interface.

2. Lets say we want to insert a new field
right under the first field currently listed.
We select the first field, then click on the
”Insert Field Above” button.

3. Notice that we now have a new field
inserted under under the ”World Cup”
field. Also notice that even though this
field doesn’t yet have a name, its defaul
data type is ”String”. You can also see
that the ”AvgGameGoal” field has a data
type of ”floating point” and therefore can
be specified with precision on the decimal
point. In this case, the decialm precision
is set at ”2”.

42

4. Now we will enter a name for our newly
created field. Let’s give it the name
”Cost” and specify the data type as
”Currency” since that is the most logical
data type for money. We have now
created a new field (or column) in our
table.

Now that we have explored the functionality for creating a new field, let’s take a quick
look at deleting a field. The following servers as a guide for deleting fields:

Deleting Fields from Tables

1. To delete a field, simply select the field
you wish to delete and then click on the
”Delete Field” Button as shown.

2. After pressing the delete button, a
dialouge will appear asking if you really
wnat to delete that field. Pressing ”Yes”
will remove the field and pressing ”No”
will leave the table unchanged.

6.12 Saving Updates and Changes to Table Properties

You may have also noticed that there is a ”Save” button on the Table Properties window,
clicking this save button will save any changes made and update the table accordingly.
Perhaps we want to change the data type of a particular field along with our insertion of

43

the new ”Cost” field shown previously. Perhaps we want the ”TotAttend” field to be a
type String instead. We may change this value by clicking on the data format cell, then
selecting ”String” from the dropdown menu. Now that all our table values are set properly,
we can hit the ”Save button” and the changes will appear in our table.

The following diagrams present a step by step guide for changing the properties of a
field and saving those changes to the table:

Saving Updates and Changes to a Table

1. Here we change the data format of the
”TotAttend” field from Integer to String.
Notice the dropdown box that allow the
user to select the desire data type.

2. Now that all desire changes have been
made, we will click on the ”Save Button”
to save these new updates.

3. Shown here is the table after updating
the Table Properties. Notice that the new
field ”Cost” is now available for each
record in the the table. Also, as we enter
values for the ”Cost” field, Picalo
auto-formats these values to appear as
currency amounts because that is the
specified data type. Notice that the letter
”N” appears in those cells that have not
yet been edited by default.

In closing, it should be noted that even though we have pressed the ”Save” button in

44

the Table Properties window, we have not yet saved the actually table. If we were to close
out of Picalo at this point without saving the file (by going to File, then Save), none of the
changes made would actually be saved for future access.

45

Chapter 7

Changing Table Properties

This tutorial explains the process of changing table properties. This process can include
adding or removing columns in a table, changing the type of data in a column, changing
the format of data in a column, and changing the precision of data in a column. These
functions are all facilitated by the Table Properties window. This interface allows for quick,
flexible editing of table structures.

7.1 Learning Objectives

1. Become familiar with the Table Properties window

2. Add a new column to the table

3. Remove a column from the table

4. Change the type of data in a column

5. Adjust the precision of data in a column

6. Select the format of data in a column

7.2 Table Properties

The Table Properties window facilitates all changes made to a table’s columns. In this
window you can perform all functions discussed in this tutorial, so it is important to
become familiar with it. To access the Table Properties window, simply select the tab of
the table you wish to edit. Then select File, Properties... The Table Properties window
should appear, displaying all of the columns in the selected table. Within this window, you
will be able to edit the columns of a table.

46

Opening the Table Properties Window

1. Select File, Properties...

2. The Table Properties window should
appear

Once all changes to the current table have been completed, select the Save button in
the bottom corner of the window. This will save all changes made to the table and exit
the Table Properties window.

47

Saving Changes

1. Click the Save button to commit all
changes made to the table or select the
Cancel button to undo all changes in the
Table Properties window

2. The changes will either be saved or discarded and the Table Properties window will
close

7.3 Adding Columns

Adding a column, also called a field, to the table is a common practice when working with
data. This task is very simple with the Table Properties window. It also allows for insertion
of columns at any point in the table, so a consitent or logical order can be maintained.

Once in the Table Properties window, select the row where you would like to insert
a new column. Then select either Insert Field Above or Insert Field Below depending
on where you would like the new column to appear. Once the new column is inserted,
the column name can be entered and its data type selected (see section 1.5 for further
explanation of data types).

Inserting Fields

1. Select the row where you would like to
insert a new field

2. Select the Insert Field Above button to
insert a new field above the selected field,
or select the Insert Field Below button to
insert a new field below the selected field

48

3. A new row should appear once you select
a button

7.4 Removing Columns

Deleting a column, or field, from a table is very similar to inserting a new column. Simply
select the field to be removed. Then select the Delete Field button. A confirmation box
will appear. Select Yes to delete the field, or select No to cancel the removal of the field
from the table. The field should be removed if the deletion was confirmed.

Deleting Fields

1. Select the field to be removed

2. Select the Delete Field button

3. Select Yes to confirm the removal of the
field or No to cancel the action

4. If the deletion was confirmed, the field
will be removed from the table

49

7.5 Data Types

The Table Properties window allows for many possible data types. An understanding of
these data types is necessary in order to select the best option for each field. These data
types are as follows:

• String : A string consists of any series of characters or numbers. Strings are useful
for data that will not need to be used in mathematical calculations. Common uses
for strings are names, addresses, phone numbers, and id numbers.

• Integer : An integer is a whole, non-decimal number. Integers can be used in mathe-
matical functions. Common uses for integers are quantities and ages.

• Floating Point : A floating point is a decimal number. Floating points are useful for
more precise data, such as averages and percentages.

• Currency : A currency number is useful for any monetary data. Currency data types
will automatically round data to two decimal places for accurate storage of monetary
values.

• Date: A date type is used to record dates. This saves the trouble of simply inserting
strings for dates. Date types can be used in date calculations.

• DateTime: A DateTime type stores both the date and time for more precision. This
data type is sometimes called a timestamp. It is useful for recording the exact times
of transactions.

• True/False: A True/False type can only contain two values: true or false. This data
type is similar to having a check box for each record in the table. It is helpful for
determining if a certain condition is true for calculations or transactions.

To change the data type of a field, select the field you would like to edit. Once the field
is selected, click the Type column. An arrow will appear in the box. Click the arrow and
a drop-down menu of all possible data types will appear. Select the desired data type and
click a different row. The other columns (Precision and Format) will then be set to the
defaults for the newly selected data type.

Selecting Data Types

1. Select the field to be changed

50

2. Select the Type field and an arrow will
appear

3. Click on the arrow and a drop-down
menu will appear

4. Select the desired data type

7.6 Selecting Precision

The precision of the floating point data type can be specified. The number entered de-
termines the number of decimal places the floating point will be rounded to. The default
precision for a floating point data type is 2. Precision must be specified using an integer.

To change the precision of a floating point data type, select the row to be changed. Click
on the Precision value for the field twice. The current precision will become highlighted
and a cursor will appear. Type in the new precision value and click out of the cell.

Changing Precision

51

1. Select the field to be changed

2. Click the Precision value for the field
twice

3. Enter the new precision value

4. Click out of the cell

7.7 Selecting Format

The format of a data type can be specified for the Date and DateTime data types. Despite
the format, the same data is held in the field. The format is simply provided for the
convenience of the user.

To change the format of a field, select the field to be edited. Click the Format cell twice
and an arrow will appear in it. Click the arrow and a drop-down menu will appear with
all possible format options. Select the desired format and click out of the cell.

Selecting Format

1. Select the field to be edited

2. Click the Format cell twice and an arrow
will appear

52

3. Click the arrow and select the desired
format

4. Click out of the cell

53

Chapter 8

Filtering

This tutorial explains the basic filtering methods in Picalo. Filtering is an essential function
for analyzing data in tables. Filtering removes all records (rows) from a table that are
not pertinent to your analysis. The removed records are not actually deleted, but only
temporarily hidden. These records can be restored at anytime. Tables are filtered by
expressions submitted by the user. In order to filter effectively, you will need to know a
few of these basic expressions.

8.1 Learning Objectives

1. Why is filtering important

2. Different ways to create a filter

3. Simple filtering expressions

4. Complex filtering expressions

8.2 Why is filtering important?

Filtering allows you to see the most critical data in your table without any unnecessary data
cluttering your view. Let’s say you have a large table of data with World Cup statistics
and you would like to see the statistics of only those World Cups that took place during the
1990s. Without any filtering applied to the table you would have to search manually for
those World Cups in the 1990s amidst all the other data while trying not to get distracted
or confused by the unrelated data. If you apply filtering, you would only see the data for
those World Cups that occurred during the 1990s.

The two figures below demonstrate this example and the usefulness of filtering.

54

Unfiltered World Cup Stats Table

1. This is a table of data without any filters
applied. As you can see, there are a lot of
records–not all of which are pertinent to
your search.

Filtered World Cup Stats Table

1. This table has been filtered to only
display World Cups that occurred during
the 1990s. This table is much easier to
read and makes it easier to find the data
pertinent to your search.

8.3 Creating a Filter

There are several different ways to create a filter. In this section you will be introduced to
four of those ways. The following are the four methods which will be discussed:

1. Right click the record

2. Use the filter box

3. Select by value

4. Select by expression

55

8.3.1 Right Click

The simplest and least powerful way to filter a table is by right clicking.

Right Click Method

1. Right click on the cell you would like to
use as the delimiter.

2. Select the appropriate expression.

8.3.2 Filter Box

The second way to filter is by using the filter box. Filtering using the filter box is more
customizable and, therefore, more powerful than using the right click method. But in order
to use the filter box you must manually enter the expression. So the filter box is only as
powerful as the extent of your knowledge of filtering expressions.

Filter Box Method

1. Type an expression into the filter box.

2. Either hit enter, or press the ’Submit’
button.

56

8.3.3 Select By Value

Another way to filter is by performing a select operation on the data. You can select by
either value or expression. In this example we’ll select by value. Selecting by value provides
a simple way to create complex filters. Selecting by value allows you to combine several
simple functions into one complex function. It is possible, for example, to filter the table
so that you only view records where the World Cup happened after 1950, but before 1990;
the games played that year were greater than 25, and there were some golden goals were
scored.

Select By Value Method

1. Select ’Data’ from the menu bar at the
top of the window.

2. Highlight ’Select’.

3. Click on ’By Value...’

4. Choose the column value you are
interested in using as a delimiter.

5. Choose the delimiting expression from the
drop down menu.

6. Type the delimiting value in the box
provided.

7. Press the ’Add’ button.

8. Repeat these steps for as many
expressions as you would like to combine
together.

9. Press the ’Okay’ button.

8.3.4 Select By Expression

You can also select by expression. This is very similar to filtering using the filter box.
It is only as powerful as the extent of your knowledge of filtering expressions. Select by

57

expression allows you to enter large expressions for complex filtering.

Select By Expression Method

1. Select ’Data’ from the menu bar at the
top of the window.

2. Highlight ’Select’.

3. Click on ’By Expression...’

4. Type the filtering expression in the box
provided.

5. Press the ’Okay’ button.

8.4 Simple Expressions

Simple expressions include comparatives such as greater than, less than, equal to, greater
than or equal to, less than or equal to, and not equal to. Simple expression compare column
values with a given value. A table of these expressions can be found below. Please take
careful notice that equal to must be written with TWO equal signs (==), NOT just one
equal sign (=).

58

8.5 Complex Expressions

Complex expressions can be made by comparing multiple columns against each other or
by using operands like ’and’, ’or’, ’and not’, and ’or not’ to combine two or more simple
expressions. See the table below for examples of each expression. Please note that each
operand must be in all lower case. The filters are case sensitive. All column names must also
be typed as they appear. For example, if the column name appears like so–’WorldCup’–the
filter will not recognize ’worldcup’. It must be typed EXACTLY how it appears.

59

Chapter 9

Sorting Picalo Tables

This tutorial explains how to sort column information in a Picalo table. Sorting tables is
an easy and efficient way to view information in an organized fashion.

9.1 Learning Objectives

1. Understand the difference between ascending and descending order

2. Sort tables using a simple right click

3. Sort tables using the file menu.

9.2 Ascending vs. Descending

Before sorting a table it is important to understand the difference between ascending and
descending order and how they relate to numbers and letters.

Ascending will sort by placing the lowest numbers or first letters (A B C . . .)at the
top of the table.

Descending will place the largest numbers or latest letters (Z Y X . . .) at the top of
the table.

If a column contains both numbers and letters (this should only occur when the column
is of type String), when in ascending order, numbers will come before letters (1 2 3 A B
C) and when in descending order, letters will come before numbers (Z Y X 9 8 7).

9.3 Sort Using a Right Click

Sorting using a right click is the quick and easy way to sort the table by only using one
column in the sort criteria. To sort by more than one column, see Sort Using the File
Menu.

60

Sort Using a Right Click

1. To begin, right click the column name of
the column to be sorted by. The white
option box to the right will appear.
Choose to sort the table by either
ascending or descending order.

The Picalo table is now sorted by the chosen column.

9.4 Sort Using the File Menu

Sort using the file menu offers more criteria when sorting a table. In Picalo, a table can be
sorted by up to three table columns.

Sort Using the File Menu

61

1. First, go to the File Menu at the top of
the screen and choose Sort.

2. The Sort Table to the right will appear.

62

3. The Sort Table shows three drop-down
menus. Each menu contains the names of
all of the columns in the open Picalo
table (see the image to the right). In the
first drop-down menu choose the column
to sort by first. In the second drop-down
menu choose the column to sort by
second. In the third drop-down menu
choose the column to sort by third. Next
choose if the columns should be sorted by
ascending or descending order.

The Picalo table is now sorted by the criteria chosen in the Sort Table. For more
complex sorting and viewing of the information in a Picalo table, see the tutorial on Pivot
Tables.

63

Chapter 10

Database Access

In this chapter you will learn how to connect to a specific type of table referred to as a
database. A database is similar to a table in that a database has rows and columns. Each
row in the database is one record or instance of data. A database differs from a table
in many ways. Unfortunately, discussion of those differences are not in the scope of this
document. There is one key difference which you need to know: A database requires a
connection in order to retreive the data.

This chapter will provide instructions on how to connect to various database services
(e.g. MySQL, Microsft SQL Server, etc.).

10.1 Connecting to MySQL

Connecting to a MySQL database is very simple. Before connecting to the database there
are a few things to check first:

1. Know the name of the table you will be looking at

2. Ensure you have sufficient access to the database (username and password)

3. Verify your internet connection is active (if your database is on another computer)

4. Check to make sure the table you are accessing is located on the computer you are
connecting to

Once you have ensured all of the above items are fine, you can start your connection to
a MySQL database.

Load a MySQL Database

64

1. In the menu, select File, Database,
Connect.... The “Connect To Database”
dialog comes up.

2. At the top of the dialog box is a
dropdown list. This contains various
database connection types. Select the
item named “MySQL (mysqldb driver)”.

65

3. If the MySQL database driver is correctly
configured, then the status message
“Driver Status: Installed and Ready” will
appear as shown in the figure. Fill out
each of the empty fields.

• Connection Name: Make this name
up. This name helps you quickly
access the data in the future. Do not
use any spaces, backslashes, or other
characters of this type in the name.

• Hostname: The name of the server
you are connecting to.

• Database: This is the name of the
specific MySQL database you are
connecting to.

• Username: Your username for the
MySQL database.

• Password: The password that
coincides with the username.

Once you have completed filling out all
the fields properly, click on the button
labeled “Connect”.

4. After the database connection has been
established, the database will appear in
the utility window on the left side of the
Picalo application. Make sure the tab
labeled “Data” has been selected. To
view the tables stored in the database,
expand the database by clicking on the
“+” next to the database. As shown in
the figure, tier1a is a table in the
database AuditOrganization.

66

5. To view the data contained in a table,
simply right-click the table you want to
view and a menu will appear. Select View
Data.

6. The data from the table will load up into
the main area of Picalo. As shown in the
figure, the name of the table selected is
shown on the tab. If the name on the tab
is different then the table you want to
view, simply go back to the utility tab
and find the table you desire.

67

10.2 Connecting to MySQL via ODBC

Microsoft uses ODBC as its standard for connecting to databases. It is possible to connect
to a MySQL database using ODBC. Before you begin, make sure that the following have
been satisfied:

1. Know the name of the table you are looking at

2. Ensure you have sufficient access to the database (username and password)

3. Verify your internet connection is active (if your database is on another computer)

4. Check to make sure the table you are accessing is located in the Window’s ODBC
Data Source Administrator

If you are unsure whether or not your Window’s ODBC Data Source Administrator
contains your datasource, open up Control Panel, Administrative Tools, and then Data
Sources (ODBC). You will see a screen that has many different datasources. Scroll down
until you see your datasource. (Note: This tutorial was written using MySQL ODBC
Connector 3.51.12; if you experience any problems with your MySQL connector, please see
your MySQL documentation.)

Load a MySQL ODBC Database

1. In the menu, select File, Database,
Connect.... The “Connect To Database”
dialog comes up.

68

2. The dialog box has a dropdown list at the
top. This contains various database
connection types. Select the item named
“ODBC (Windows odbc driver)”.

3. If the Windows ODBC driver is correctly
configured, then the status message
“Driver Status: Installed and Ready” will
appear as shown in the figure. Fill out
each of the empty fields.

• Connection Name: This name helps
you quickly access the data in the
future. Do not use any spaces,
backslashes, or other characters of
this type in the name.

• DSN: Type dsn=datasource where
datasource is the name of the
datasource found in Window’s
ODBC Data Source Administrator.

Once you have completed filling out all
the fields properly, click on the button
labeled “Connect”.

69

4. After the database connection has been
established, the database will appear in
the utility window on the left side of the
Picalo application. Make sure the tab
labeled “Data” has been selected. To
view the tables stored in the database,
expand the database by clicking on the
“+” next to the database. As shown in
the figure, tier2a is a table in the
database AuditOrganization.

5. To view the data contained in a table,
simply right-click the table you want to
view and a menu will appear. Select View
Data.

70

6. The data from the table will load up into
the main area of Picalo. As shown in the
figure, the name of the table selected is
shwon on the tab. If the name on the tab
is different then the table you want to
view, simply go back to the utility tab
and find the table you desire.

10.3 Querying a Database for Information

Database queries follow a format known as Structured Query Language, or SQL. There
are numerous books that explain and itemize SQL format. This being, the purpose of this
tutorial is not to explain multiple queries, but rather to give very basic guidelines on the
subject.

SQL focuses on readability. As such, it is not difficult for someone completely new
to SQL to understand the logic of what is happening behind a query. There are certain
reserved words in SQL. These words are to be used as commands, so databases, tables,
and attributes cannot be given these names. This generally isn’t a problem, as database
engineers are very familiar with SQL.

The reserved words that we will cover are as follows:

• Select - Used to establish what attributes we want selected from the query (Hence
the word. Readability is key)

• From - Used to establish which table or tables we are querying for information.

• Where - Establishes the criteria of our search. A query can take place without this
word, but is much more robust is the user supplies a criteria.

An SQL query has a certain structure. The word select comes first, then from, then
where. The structure is as follows:

71

• SELECT attribute1, attribute2 FROM tablename WHERE condition = ’x’

Notice how you can select multiple attributes by separating them with commas. This
is useful if you want to display certain attributes of a record but not others. In the select
clause, you may also include an asterix (*), and all attributes will be displayed. The
tablename, attributes, and condition criteria must be spelled the exact same as they are
spelled in the database (that includes upper- and lower-case letters). If a condition criteria
is a numeric value, no apostrophes are needed, but if it has characters in it, it must be
surrounded by apostrophes.

Basically, a select query is saying ”SELECT these attributes FROM this table, WHERE
these criteria are met.”

Keeping with the kitchen items example, lets use our KitchenItemsConnection that we
established in the previous example and write a query to display the description of each
appliance.

Query Appliance Information from the Kitchen Items Database

1. Click on File, Database, Query...

2. The following menu will appear.

In the ”Connection Name” box you will select the connection that you wish to use.

72

Since we wish to use the connection that we created to the Kitchen Items database,
we will select KitchenItemsConnection.

The data will be returned in a table, so we must name it. Name it something
descriptive of what the query will accomplish.

The SQL Query text area is where we will actually type our query. What will be
displayed with the query that is shown? Remember that SELECT determines what
will be shown, so we will be seeing a description, but a description of what?

FROM shows us where the description will be coming from, so it will be from the
table appliances.

WHERE tells us what the criteria of the search are. In this case we are limiting the
search to those records that have Amana as their ”make” attribute. So if we take
them all together, we are looking for the description of any appliance that is made
by Amana.

3. The results of the query are shown. There
are three products that matched our
criteria. Their descriptions are shown.

4. It’s that easy! Simply select a connection, name the table that the information will
be displayed in, and enter the query! If we had written SELECT * FROM appliances
WHERE id = ’123451’, what would have been displayed? All the information about
the appliance who’s ID number is 123451.

73

Chapter 11

Joining Two Tables Together

This tutorial explains how to join two tables together with Picalo. This feature allows to
you take information from two tables and combine it into one table according to values you
specify. This allows you to make quick comparisons between tables and use information
from both at the same time. This tutorial will explain how to do this with a regular join
and with a fuzzy match.

11.1 Learning Objectives

1. Understand the usefulness of joining tables

2. Join tables with a regular join

3. Join tables using a fuzzy match

4. Analyzing resulting tables

11.2 Joining Tables

You can join two Picalo tables together according to certain values. If you want to determine
what results come about by matching a value in one column of a table with the same or
different column in another table, a join will assist you in doing so. Once you specify which
value you want to match in both tables, the joined table will only show the rows that have
a match for those two values.

As you begin to determine which tables you want to join, there are some important
facts you must consider:

• If there are no matching values in the two columns that you specify, the resulting
table will come up blank. This isn’t a mistake - it just means that there were no
matching values in those columns.

74

• It is possible for you to join by more than one criteria. This can save you the time it
would take to sort your results and determine which rows you wanted.

• Remember to give the table you’re going to join the values to a logical name that
describes the join of two tables. If you do so, it will be less confusing, and the program
won’t give you an error message when you try to join the tables.

• In a regular join, the two values in the tables must match exactly. In a fuzzy join,
the two values can be similar, but not necessarily exact.

Using joins can save you a significant amount of time if you’re trying to sift through
a large number of records. For example, if you have a table that contains customer infor-
mation, and another table that has information about transactions, a join would aid you
in determining specific information about each customer and his/her transactions. You
could simply do a join where the customer ID in the first table matches the customer ID in
the second table. The resulting table would have that customer ID, information, and each
transaction that customer participated in.

This specific join would save you the trouble of having to sort each table by customer ID,
then try to find the desired customer ID in the first table and compare it to the customer
IDs in the second table to see which transaction the customer participated in. A join
allows you to see all of this information at one time, reducing errors and frustration trying
to switch between tables.

The following is an example of a regular join in Picalo.

A Regular Join in Picalo

1. Select Data, Join. Select the ’By Value...’
option.

2. Select the two tables from the drop-down
lists that you want to join. You are going
to choose values from a column in each of
these tables that you want to match.

75

3. In the first set of drop-down lists, specify
which columns in the two tables you want
to have matching values for your new join
table. If you want to retrieve rows that
have matching values in more than one
column, specify those columns you wish
to have matching values in the second
and third set of drop-down lists.

4. Name the results table - this will be the name of the new table that has the values
you joined together from the two tables

5. Press OK. Your joined table should now
appear with the name that you specified
in its corresponding tab at the top of the
page. The table only has fields where the
values you specified match. This table
can now be sorted and edited like any
other table.

11.3 Joining Tables Using Fuzzy Match

Because there may be times when you want to join tables, but there may not be exact
matches, Picalo provides the capability of fuzzy matching. This allows you to compare
columns in the tables, but make joins where matches are not exact, but similar. If the
value in one column was ’match’, the following could be valid names in the column in the
other table that would allow a fuzzy join:

• match

• matched

• matcher

• matching

• matchbox

Warning: Picalo’s fuzzy matching algorithm is a powerful way of matching. However,
it is exponential in its algorithm. We are currently working on ways of speeding it up, but
it is not possible to use normal indices (which speed things up considerably) like databases

76

or Picalo’s regular join command use. Instead, the fuzzy match algorithm must match each
value in the first table with each value in the second table.

To illustrate, suppose you have two tables with 10 records each. You’ll have to compare
100 records to compare each value in the first table to each value in the second table. Now
suppose you have two tables with 1000 records each. You now have 1,000,000 comparisons
to make. Suppose you have two tables with 10,000 records each. This equates to 100
million comparisons.

The following is an example of how you would join a table by fuzzy match:

A Fuzzy Join in Picalo

1. Select Data, Join. Select the ’By Fuzzy
Match...’ option.

2. Select the two tables from the drop-down
lists that you want to join by fuzzy
match.

3. In the first set of drop-down lists, specify
which columns in the two tables you want
to have similar values for your new join
table. If you want to retrieve rows that
have similar values in more than one
column, specify those columns you wish
to have similar values in the second and
third set of drop-down lists.

77

4. Specify how similar you want the values
to be. If you put a smaller percentage in
this box, the values can be less similar. If
the percentage is very high, the values
have to be quite similar if the new table is
going to consider them a match.

5. Name the results table - this will be the table that has the values you joined
together from the two tables

6. Press OK. Your joined table should now
appear with the name that you specified
in its corresponding tab at the top of the
page. The table only has fields where the
values you specified are similar. This
table can now be sorted and edited like
any other table.

11.4 Analyzing Resulting Tables

Tables are designed to eliminate redundant data. If we use the customer example again,
you don’t want to have to list each customer’s information in the transaction table for
every transaction that customer participated in. Instead, you have the customer’s ID in
that table that references all the customer’s information in a different table. That way,
you save space and the time it would take to enter that customer’s information in over and
over.

Unfortunately, this makes it more difficult to do data analysis. Joins and fuzzy joins
provide the means for you to join those tables back together, but only the fields that you
need.

Continuing with our customer example, if we want to know the city names where
customers who bought a certain type of candy live, then we’d filter the transaction table
to only show that type of candy. We’d then join the customer table with the transaction
table where the customer ID in each table was equal. That way, we can see the customer
information for each customer that bought that candy.

The table that was joined can then be analyzed. Because you’re only viewing customers
that bought the type of candy you’re analyzing, you can see which cities most of those
customers live in, or the household size of customers who bought that candy. By joining
the tables, you saved yourself a great deal of time because now all the information can be
viewed and analyzed in one table.

78

	Introduction
	A Short FAQ
	Why Picalo?
	What is the Picalo philosophy?
	What is Picalo's relationship to ACL and IDEA?
	Why not use MS Excel?
	How does Picalo compare with EnCase or The Forensic Toolkit?
	What is Picalo's relationship to Numerical Python/Numarray/SciPy?
	What is Picalo's relationship to Python?
	Why Python (instead of VB, Perl, Java, .Net)?
	Why open source?
	Where does the name Picalo come from?
	What are Picalo's Limitations?

	Acknowledgments
	License

	A Tour of Picalo
	The Picalo Workspace
	Object Tree
	Table/Script Tabs
	Shell, Command Log, and Script Output

	Working With Picalo Commands
	Menu and Toolbar

	Expressions

	Detectlets
	Example Detectlets
	Detectlet Installation

	Best Practices Usage
	Picalo Preferences
	Chapter Learning Objectives
	Access General Preferences
	Disable Splash Screen
	Automatically Check for Updates
	Change Preferred Language
	Add commands to run at startup
	Access the Script Editor Preferences
	Change Font Preferences
	Tab Preferences
	Method Preferences

	Introduction to Picalo Tables
	Learning Objectives
	Picalo Tables
	Loading and Saving Picalo Files
	Sorting Tables
	Editing and Adding Records
	Copying and Pasting Table Data
	Importing Data
	Closing Tables
	Rows and Columns: What are they?
	Inserting and Deleting Rows
	Insert and Delete Fields (or Columns)
	Saving Updates and Changes to Table Properties

	Changing Table Properties
	Learning Objectives
	Table Properties
	Adding Columns
	Removing Columns
	Data Types
	Selecting Precision
	Selecting Format

	Filtering
	Learning Objectives
	Why is filtering important?
	Creating a Filter
	Right Click
	Filter Box
	Select By Value
	Select By Expression

	Simple Expressions
	Complex Expressions

	Sorting Picalo Tables
	Learning Objectives
	Ascending vs. Descending
	Sort Using a Right Click
	Sort Using the File Menu

	Database Access
	Connecting to MySQL
	Connecting to MySQL via ODBC
	Querying a Database for Information

	Joining Two Tables Together
	Learning Objectives
	Joining Tables
	Joining Tables Using Fuzzy Match
	Analyzing Resulting Tables

