Picalo

Data Analysis and Fraud Detection Toolkit

http:/ fwww.picalo.org/
Released under the GNU General Public License

Picalo Cookbook

Conan C. Albrecht, PhD

March 31, 2010

Contents

1 orking Wit ables 5
(.1 Createa Table 6
(.2 Accessa Cell Valuel 8
(1.3 Modity a Cell Value|. 9
4 SetaCelltoNone 10
(.o Retrieve a Table Recordl 11
(1.6 Retrieve Several Table Records By Index{ 12
(.7 Retrieve a Table Columnl 14
(L8 Add a Record toa Tablel 15
(L9 Delete a Record from a Tablel 16
(1.10 Count the Recordsin a Tablel 17
(.11 View Table Column Names 18
(.12 View Table Structurel 19
(1.13 Change a Column Name| 20
(1.14 Change a Column Typel 21
(1.15 Change a Column Format{ 23
(.16 Add a Column toaTablel 27
(.17 _Add an Active Calculated Column to a Table 28
(.18 Add a Static Calculated Column to a Tablel 30
(.19 Remove a Column From a Tablef. 32
(1.20 Copy an Entire Table|. 33
(1.21 Copy Part ot a Table| 35
(.22 Combine Two Tablesl 36
(.23 Delete a Tablel. o0 37

[27 Working With Table Lists| 39
21 CreateaTable Listl 40
2.2 _Access an Individual Tablein a Iistl. 41

CONTENTS Picalo Cookbook

2.3 Add a Table toa Table Iistl 42
2.4 Convert a Table List into a Tablel 43
[3 Basic Table Analysis| 44
[3.1 Making a Table Read-Only|. 45
(3.2 View Table Descriptives| 46
3.3 Validate Column Datal 47
3.4 Totala Colummnl o 50
[3.5 Analyze Each Record mn a Table 51
3.6 Search a Tablel. 52
B.7 FKilter aTablel 54
(3.8 Filter a Table Using Wildcards| 56
3.9 Clear a Filter from a Tablel. 58
3.10 Sort a Tablel 59
[4 Loading and Saving Datal 60
41 Toad a Picalo Tablel. 61
4.2 Import a Delimited Text File| 62
4.3 Import a Fixed Width Text File| 63
4.4 Import an EBCDIC Data File| 64
(4.5 Import an XML Data File| 66
4.6 Import a Microsoft Excel File} 67
4.7 Save a Picalo Tablel 68
4.8 Export a Delimited Text File| 69
4.9 Export a Fixed Width File| 70
[4.10 Export an XML Data File| 71
[4.11 Export a Microsoft Excel File| 72
[> Working With Databases| 73
b.1 Connect to a Databasel 74
H.2 View Database Tables 76
(0.3 Run an SQL Query| 0L 7
[b.4 Run an SQL Query Efficiently| 78
[b.5 Insert a Record into a Databasel 79
[>.6 Update a Record in a Database] 81
(5.7 Upload an Entire Table to a Database] 83
(5.8 Copy a Table From One Database to Another| 85
H.9 Create a Database Index| 86

CONTENTS Picalo Cookbook

.10 Delete a Record From a Databasel 87
b.11 Delete All Records From a Databasel 88
[5.12 Access a Database Directly (bypassing Picalo)l 89
[>.13 Create Unique Numbers| 90
[6 Scripting| 91
6.1 Run a Command in the Shelll 92
6.2 View the History| 93
6.3 Save the History| 94
6.4 Start a New Script| oL 95
6.0 Runa Scriptf. oL 96
6.6 Run a Script in New Picalo| 97
6.7 Run a Script Outside of Picalo|. 98
6.8 Cancel a Running Script| 100
6.9 Use a Standard Python Module| 102
[6.10 Use a Nonstandard Python Module| 104
6.11 Create Function Librariesl 106
[6.12 Show Script Progress to the User| 108
[6.13 Turn Oft Picalo Progress Indicators| 109
6.14 Show a File Selector to the User 110
[7 Text Processing] 111
(.1 Read an Entire Text Filel o000 0000000 112
[7.2 Read a Text File Line By Line|. 113
(7.3 Import Email Into Picalo|. 114
(.4 Extract Data From Nonstandard Text Files 116
8 Other Useful Tasks| 119
R.I __Generate Random Numbers 120
8.2 Randomize Table Recordsl 122
8.3 _Choose a Random Table Recordl 123
[8.4 Scrape a Web Page tor Datal 124

Page 3 of

About This Book

The purpose of this book is to show you how to accomplish simple and
advanced tasks in Picalo. It is structured in the familiar “cookbook” format,
with recipes for different things you might need to do.

Each recipe in the book shows both the GUI and scripting ways to accom-
plish each task. While most tasks can be performed either way, it is noted
when tasks are only available with scripting commands. To speed the writing
of this book, screen shots have been omitted in favor of textual descriptions.

Scripting commands can be entered two ways into Picalo. First, you can
simply type them line by line into the Shell at the bottom right of your
screen. Second, you can create a new script, type all the command lines, and
click the Run button on the toolbar.

Contributions

I welcome contributions to this manual. If you have a recipe to submit, email
the text to me and I'll attribute it to your name in the text.

A Moving Target

Since Picalo is a work in progress, it is constantly improving and changing.
Therefore, the dialogs in the program may be slightly different that what
you see in this manual due to change in the program. We’ll try to keep the
manual updated with the program, but we simply do not have enough time
to update the manual in perfect unison with the program. Since the Picalo
program itself is the main priority, the manual may be slightly behind the
actual features or user interface of the program.

Chapter 1

Working With Tables

This chapter presents recipes for working with tables, from creating new
tables to adding records and columns.

Tables are the basic data type of Picalo, and they are the most important
thing for you to understand. All data are kept in Picalo table objects. Almost
all Picalo functions input and output one or more tables.

Tables are made up of records and columns. Records are sequentially
numbered. Columns are named and have explicit types. Columns can be
displayed with format masks, and they can also be calculated.

Tables always have a name in Picalo, which may be different from the
actual filename the table was loaded from. Names are important so the table
can be referenced in the Shell, in scripts, and in dialog boxes. The script
examples in this section generally use data for the table name.

N O U W N =

CHAPTER 1. WORKING WITH TABLES Picalo Cookbook

1.1 Create a Table

Picalo GUI Recipe:
1. Select File — New Table...

2. Enter a name for the new table (must follow the rules for column
names).

3. Enter the column names and types into the dialog.

4. Click the Save button.

Script Recipe:

data = Table (]
(’ID’, unicode),
(’Name’, unicode),
(7Age7 ’ int) ’
(’BirthDate’, Date),
(’Salary’, float),

1)

Discussion:

Creating a new table requires defining its column names and types. Column
names must start with a regular letter (A-Z, a-z, or underscore) and then
contain any combination of letters or numbers (A-Z, a-z, underscore, 0-9).
Column names are case sensitive, meaning the columns myID and MYid and
Myld are different names. The following names are valid:

e ID
e mylD
e FirstName

e First_Name

Page 6 of

CHAPTER 1. WORKING WITH TABLES Picalo Cookbook

_first_name

col8

The following names are invalid and will be rejected by Picalo:

8col (starts with a number)
First Name (contains a space)
int (Picalo reserved word)

Age*Name (contains a star)

Picalo supports the following column types:

str - a string column of any length

unicode - a string that supports international characters, up to 65,535
characters in length

int - an integer in the range -2,147,483,647 to 2,147,483,647 (actual
range depends upon platform)

long - a long integer with greater range than int (actual range depends
upon platform)

number - a floating-point number (i.e. has a decimal)
Date - a date field with various formats

DateTime - a date and time field with various formats

Picalo can actually hold more types than those listed above, but these
are the types supported directly by the GUI. You can use any Python type
if you create tables from the Shell. If you are wondering, there is a reason
the Date and DateTime types are capitalized and the others are not.

Page 7 of

N O Ot W N =

CHAPTER 1. WORKING WITH TABLES Picalo Cookbook

1.2 Access a Cell Value

Picalo GUI Recipe:

1. Double-click a table in the left-side project browser to view table data.

Script Recipe:

print data[0].Age

print data[0]["Age’]

print data[Name’][4]

print data.column(’Name’)[4]
print data[0][2]

print data.record (0).column(2)
print data[—1].Name

value in the first record, Age column
value in first record, Age column
value in the fifth record, Name column
value in the fifth record, Name column
value in the first record, third column
value in the first record, third column
value in the last record, Name column

RN NN N NN

Discussion:

Picalo supports a wide variety of methods for accessing table cell values to
support different coding styles. The first script line is the preferred Picalo
code for accessing records.

As with most things in Picalo, records indices are zero-based, which means
that the first record is [0], the second record is [1], and so forth. Record
indices also support negative numbers, which number from the bottom of
the table. Picalo is zero-based because it’s base language, Python, is zero-
based. New users who have not used zero-based languages like Java, C++,
or C# before may feel uncomfortable with this at first.

The script recipe section above shows a number of ways to assign the cell
value to a variable. See the comments on each line for a description of which
cell is being accessed.

Page 8 of

CHAPTER 1. WORKING WITH TABLES Picalo Cookbook

1.3 Modify a Cell Value

Picalo GUI Recipe:
1. Double-click a table in the left-side project browser to view the table.

2. Start typing in the cell you wish to modify.

Script Recipe:

data [0].Age = 13
data[0] = [’Fred’, ’Smith’, 13]

Discussion:

Use the equals sign to assign a value to a cell. The format of the left side of
the equation follows the same formats available when accessing a cell value.
See the previous section for various formats.

The second script line shows how to modify an entire record at once by
setting the record equal to a list (denoted with square brackets and commas).

Whenever a cell value is set, the new value is coerced into the right type
using the column type. For example, if you set the value of a cell to the
string '13” and the column type is int, Picalo will convert the value to the
integer 13. If Picalo cannot coerce the value into the right type, you will get
an error object in the field.

Page 9 of

CHAPTER 1. WORKING WITH TABLES Picalo Cookbook

1.4 Set a Cell to None

Picalo GUI Recipe:

1. Not available (yet).

Script Recipe:

data [0].Age = None

Discussion:

The None type in Picalo represents an empty value. This is different than
a zero value (which means a value of zero :) or an empty string (7). The
None value means that nothing exists in a cell. It is similar to the null type
in other programs.

Picalo defines the keyword None (without quotes) to represent this non-
existent value. None values can throw off analyses if you are not careful.

Page 10 of

N O Uk W N

CHAPTER 1. WORKING WITH TABLES Picalo Cookbook

1.5 Retrieve a Table Record

Picalo GUI Recipe:
1. Double-click a table in the left-side project browser to view table data.

2. Browse to the record you want to retrieve.

Script Recipe:

rec = data[0]
rec[0] = ’Fred’
rec.Age = 13
print rec.Name

for cell in rec:
print cell

Discussion:

Picalo records are objects that look like lists of data. As such, you can set
entire records equal to a variable name and access the columns of the given
record using the familiar idioms (by index or by name).

As a list-like object, you can iterate over a record and access the individual
cells using a for loop, as the example shows.

Page 11 of

CHAPTER 1. WORKING WITH TABLES Picalo Cookbook

1.6 Retrieve Several Table Records By Index

Picalo GUI Recipe:
1. Open the source table into the viewer window.
2. Select Data — Select — By Record Index .

3. Enter the starting and ending row indices, enter a results table name,
and press OK. The starting and ending indices are inclusive in this
dialog.

Script Recipe:

retrieve records 5—9 inclusive
newtable = data[5:10]

retrieve every other record 5—9 inclusive
newtable2 = data[5:10:2]

retrieve the first 10 records of the table
newtable3 = data[:10]

retrieve all records after record 14
newtable4 = data[15:]

retrieve all records except the last 20
newtable5 = data[0: —20]

Discussion:

You can retrieve several records from a table using slices. A slice has a
starting index and ending index, separated by a colon. The result is a new
table containing the given records.

Consistent with the Python language, the slice is inclusive of the first
number and exclusive of the second number. In other words, the first example
above (newtable) retrieves records 5-9 inclusive, or the sixth, seventh, eighth,
and ninth rows.

Page 12 of

CHAPTER 1. WORKING WITH TABLES Picalo Cookbook

A third number can be added to specify a stepping value for the indices.
In the second example above (newtable2), records 5, 7, and 9 (sixth, eighth,
and tenth table rows) are copied into the new table.

Picalo allows you to leave off the starting or ending index, as shown in
the third and fourth example. If you leave off the first index (third example),
Picalo will assume the beginning of the table (index 0). If you leave off the
last index (fourth example), Picalo will assume the end of the table (last
record). If you leave off both indices [:], Picalo will copy the entire table to
another table.

Finally, you can use a negative index to count from the end of the table.
In the fifth example, the -20 means the last 20 records of the table. Assuming
the data table has 100 records, [0:-20] is identical to [0:80].

Page 13 of

N OO R W N =

CHAPTER 1. WORKING WITH TABLES Picalo Cookbook

1.7 Retrieve a Table Column

Picalo GUI Recipe:

1. Column objects are not directly available in the GUI, but their names
and types can be modified in the Table Properties dialog.

Script Recipe:

col = data[’Name’] # retrieve the name column
col [0] = ’Danny’
print col.get_type() # prints <str>
print col.get_name/() # prints ’'Name’
for cell in col:
print cell
Discussion:

Similar to record objects, column objects act like regular lists of values. You
can set individual record cells for the column using square brackets and the
record index. Columns also have a number of object methods to retrieve
column type, name, and so forth.

As a list-like object, you can iterate over a column and access the indi-
vidual cells using a for loop, as the example shows.

Page 14 of

© 0N s W N

e e e e
N O Uk W N = O

CHAPTER 1. WORKING WITH TABLES

Picalo Cookbook

1.8 Add a Record to a Table

Picalo GUI Recipe:

1. Double-click a table in the left-side project browser to view table data.

2. Navigate to a record below where you wish to add the new record.

3. Select File — Row — Insert Row (or Append Row for the end
of the table).

4. The cells in the new row will be set to None.

Script Recipe:

dat

dat

rec
rec
rec
rec

data.append(’Fred’,

a.insert (2,

a.insert (2)

’Fred’,

= data.insert (2)

.FirstName =
.LastName =
.Age = 35

’Fred’
’Smith’

data.append ()

rec = data.append ()
rec.FirstName = ’Fred’
rec . LastName = ’'Smith’
rec.Age = 35
Discussion:

"Smith’, 35)

"Smith’, 13)

insert before third record with cell values
insert before the third record with None wvalues

insert before the third record with None wvalues
set the walues of the record

B N NI N

append to table end with cell wvalues
append to table end with None wvalues

append to table end with None wvalues
set the wvalues of the record

R N N N

New records can be inserted or appended anywhere in a table. The script
code shows several possible ways of doing this, depending upon your coding
style.

Page 15 of

CHAPTER 1. WORKING WITH TABLES Picalo Cookbook

1.9 Delete a Record from a Table

Picalo GUI Recipe:
1. Double-click a table in the left-side project browser to view table data.
2. Navigate to the record you wish to delete.

3. Select File — Row — Delete Row...

Script Recipe:

1 del data[5] # deletes the sizth record in the table
2 del data[—1] # deletes the last record in the table
Discussion:

Picalo follows the standard Python way of deleting list items using the del
keyword. As with all table operations, you can use a negative index to start
at the end of the table.

Page 16 of

CHAPTER 1. WORKING WITH TABLES Picalo Cookbook

1.10 Count the Records in a Table

Picalo GUI Recipe:
1. Double-click a table in the left-side project browser to view table data.

2. The number of records in the table will show in the bottom-right of the
Picalo window.

Script Recipe:

numrecs = len (data)

Discussion:

Following the standard Python syntax, use the len function to count the
number of items in any list, including in a Picalo table. Note that if you
retrieved a large data set from a database, calling this method may pull all
the records into memory so Picalo can count the number of records. Some
databases can return the length of a result set directly, while others require
Picalo to count manually.

Page 17 of

CHAPTER 1. WORKING WITH TABLES Picalo Cookbook

1.11 View Table Column Names

Picalo GUI Recipe:
1. Double-click a table in the left-side project browser to view table data.

2. Select File — Table Properties... or click the ‘wrench’ icon on the
toolbar.

3. The table properties dialog shows, letting you view the columns in the
table.

Script Recipe:

print the column names
print data.get_column_names|()

for rec in data:
for colname in data.get_column_names ():

1
2
3
4 # iterate across the rows of a table, then the columns of each row
5
6
7 print rec[colname]

8

9 # retrieve the actual column objects
10 cols = data.get_columns ()

11 for col in cols:

12 print col.get_name /()

Discussion:

There are a number of ways to access the column names in a table. The
primary way is the get_column_names() method of table, which returns a list
of column names.

An alternative way is to access the actual column objects, as shown in the
last example. This gives you access to the methods of the column, including

get_name(), get_type(), and get_format().

Page 18 of

CHAPTER 1. WORKING WITH TABLES Picalo Cookbook

1.12 View Table Structure

Picalo GUI Recipe:
1. Double-click a table in the left-side project browser to view table data.

2. Select File — Table Properties... or click the ‘wrench’ icon on the
toolbar.

3. The table properties dialog shows, letting you view the structure of the
table.

Script Recipe:

1 struct = data.structure()
2 struct.view ()

Discussion:

The structure() method of table returns a new table containing the column
information for the entire table, including the column names, types, expres-
sions, and format.

Page 19 of

Ul W N

CHAPTER 1. WORKING WITH TABLES Picalo Cookbook

1.13 Change a Column Name

Picalo GUI Recipe:
1. Double-click a table in the left-side project browser to view table data.

2. Select File — Table Properties... or click the ‘wrench’ icon on the
toolbar.

3. The table properties dialog shows. Change the column name and click
‘Save’.

Script Recipe:

first get the column object, then change its mname
data | ’Name’ |. set_name (’FirstName ’)

change the name wusing the table method
data.set-name ('Name’, ’FirstName’)

Discussion:

Column names can be changed at any time, using the GUI, the column
object, or the table itself. Column names must be unique and must follow
the rules described earlier in this chapter.

Page 20 of

CHAPTER 1. WORKING WITH TABLES Picalo Cookbook

1.14 Change a Column Type

Picalo GUI Recipe:

1.

2.

Double-click a table in the left-side project browser to view table data.

Select File — Table Properties... or click the ‘wrench’ icon on the
toolbar.

The table properties dialog shows. Change the column type and click
‘Save’.

Script Recipe:

1 # first get the column object, then change its type
2 data.column(’Name’).set_type (unicode)

3

4 # change a type using the table method
5 data.set_type(’Salary’, float)

Discussion:

Column types can be changed at any time, using the GUI, the column object,
or the table itself. The existing values in the column will be immediately
coerced to the new type. If values cannot be converted, an error object will
be placed in the cell.

Picalo supports the following column types:

str - a string column of any length

unicode - a string that supports international characters, up to 65,535
characters in length

int - an integer in the range -2,147,483,647 to 2,147,483,647 (actual
range depends upon platform)

long - a long integer with greater range than int (actual range depends
upon platform)

Page 21 of

CHAPTER 1. WORKING WITH TABLES Picalo Cookbook

e float - a floating-point number (i.e. has a decimal)
e Date - a date field with various formats
e DateTime - a date and time field with various formats

Picalo can actually hold more types than those listed above, but these
are the types supported directly by the GUI. You can use any Python type
if you create tables from the Shell. If you are wondering, there is a reason
the Date and DateTime types are capitalized and the others are not.

Page 22 of

1
2
3
4
5

CHAPTER 1. WORKING WITH TABLES Picalo Cookbook

1.15 Change a Column Format

Picalo GUI Recipe:
1. Double-click a table in the left-side project browser to view table data.

2. Select File — Table Properties... or click the ‘wrench’ icon on the
toolbar.

3. The table properties dialog shows. Click on one of the column names
to display its information on the right. Picalo can format date and
number fields.

4. In the format text box, enter a format appropriate to the column type
(such as $#,##0.00 for currency).

5. Alternatively, click the little ‘gear’ icon next to the format text box to
open the format dialog. This dialog will help you create the format.

6. Click the ‘Save’ button to finish.

Script Recipe:

set the amount column to have three decimal places
data [’Amount’].set_format (20.000 ")

set the format using the table method of a date column
data.set_format (’Birthdate’, *%Y—%m-%d’)

Discussion:

Formats in Picalo are very important for number and date fields. They affect
how values are entered into a field and how values are displayed. The format
dialog (accessed from the table properties dialog) is useful when putting
formats together.

Date Fields

Picalo supports two types of date fields: Date and DateTime. It uses the
standard format characters to both parse input values and format display

Page 23 of

CHAPTER 1. WORKING WITH TABLES Picalo Cookbook

values. In other words, Picalo will use the format to interpret data you enter
into a table, whether by code, the GUI, or import. Be sure to set the format
correctly before you start entering data.

The date specifiers are as follows:

e %D Locale’s abbreviated month name.

e %B Locale’s full month name.

e %c Locale’s appropriate date and time representation.
e %d Day of the month as a decimal number [01,31].

e %H Hour (24-hour clock) as a decimal number [00,23].
e %I Hour (12-hour clock) as a decimal number [01,12].
e %j Day of the year as a decimal number [001,366].

e %m Month as a decimal number [01,12].

e %M Minute as a decimal number [00,59].

e %p Locale’s equivalent of either AM or PM. (1)

e %S Second as a decimal number [00,61]. (2)

e %U Week number of the year (Sunday as the first day of the week) as
a decimal number [00,53]. All days in a new year preceding the first
Sunday are considered to be in week 0. (3)

o %w Weekday as a decimal number [0(Sunday),6].

e %W Week number of the year (Monday as the first day of the week)
as a decimal number [00,53]. All days in a new year preceding the first
Monday are considered to be in week 0. (3)

e %x Locale’s appropriate date representation.
e %X Locale’s appropriate time representation.
e %y Year without century as a decimal number [00,99].

e %Y Year with century as a decimal number.

Page 24 of

CHAPTER 1. WORKING WITH TABLES Picalo Cookbook

%Z Time zone name (no characters if no time zone exists).

%% A literal %’ character.

Following are examples of date formats:

2009-01-31 — %Y-%m-%d

January 25, 2015 — %B %d, %Y

10:Jan:31 — %y-%b-%d

January 25, 2015, 15:30:22 — %B %d, %Y, %H:%M:%S

Number Fields

Picalo can format numbers as currency, in scientific notation, etc. Num-
ber formats are different from date formats because they do not affect the
input of data; they only affect the display. For numbers you enter via the GUI
or import from text files, Picalo uses a pretty intelligent parser to pull the
number out of the field. It automatically discards monetary signs, commas,
and other extra characters. It can automatically detect scientific notation.

Number formats are important for display on the screen, printed reports,
and exported files. The special characters are as follows:

Prefix the format with any character(s) (like $) to add to the front of
the number.

End the format with a zero (0) to round to the nearest whole number.
Use a period (.) to denote decimal portions of the number.
Use a pound (#) to denote a regular number.

Use a comma (,) to denote a thousands separator (use with # signs to
place it every three numbers)

Use a percent (%) to denote the value should be displayed as a percent
(multiplied by 100 to when displayed and divide by 100 when parsing
input and the number ends with a %)

Use the letter E+ followed by zeros to denote scientific notation.

Following are examples of number formats:

Page 25 of

CHAPTER 1. WORKING WITH TABLES Picalo Cookbook

e (- Rounds to the nearest whole number. 10.99 is displayed as 11; 12.3
is displayed as 12.

e (0.00 - Rounds to the nearest hundredth. 10.99 is formatted as 10.99;
12.309 is formatted as 12.31; 13 is formatted as 13.00.

e $0.00 - Rounds to the nearest hundredth and adds a dollar sign to the
front of the number. (you can also use any other character, such as the
euro glyph)

o # #4t4 - Formats thousands with a comma. 1234.56 is formatted as
1,234.56.

e # #40 - Formats thousands with a comma and rounds to the nearest
whole number. 1234.56 is formatted as 1,235.

e # #4:0.000 - Formats thousands with a comma and rounds to the
nearest thousandth. 1234.56 is formatted as 1,234.560.

e 0% - Rounds to the nearest whole number, multiplies by 100 (for display
only), and adds a percent sign.

e 0.00% - Rounds to the nearest hundredth, multiplies by 100 (for display
only), and adds a percent sign.

e #E4000 - Shows the number in scientific notation to the given number
of decimal places.

Page 26 of

0 N O U R W N =

e e
N A =)

CHAPTER 1. WORKING WITH TABLES Picalo Cookbook

1.16 Add a Column to a Table

Picalo GUI Recipe:
1. Double-click a table in the left-side project browser to view table data.

2. Select File — Table Properties... or click the ‘wrench’ icon on the
toolbar.

3. The table properties dialog shows. Navigate above or below the column
you want to add the new column by.

4. Click the ‘star’ icon on the left side of the dialog. One icon will add
the new column above the current column; the other will add below.

5. Set the new column name and type. Click ‘Save’ to finish.

Script Recipe:

add a column to the end of a table
data.append_column (’FavColor’, unicode)
add a column to the end of a table, with initial values for each row
data.append_column(’FavColor’, unicode, |
’Yellow
"Yellow ’
’Blue ’,
’Green

additional values for each record

1)

insert a column in the third position
data.insert_column (2, ’FavColor’, unicode)

Discussion:

New columns initialize with the None type in each cell, unless you provide
initial values for the column. When a column is inserted, as in the last
example, all other columns are pushed right to make room for it.

Page 27 of

CHAPTER 1. WORKING WITH TABLES Picalo Cookbook

1.17 Add an Active Calculated Column to a
Table

Picalo GUI Recipe:
1. Double-click a table in the left-side project browser to view table data.

2. Select File — Table Properties... or click the ‘wrench’ icon on the
toolbar.

3. The table properties dialog shows. Navigate above or below the column
you want to add the new column by.

4. Click the ‘star’ icon on the left side of the dialog. One icon will add
the new column above the current column; the other will add below.

5. Set the new column name. Set the column type to one of the types.

6. Add a calculation in the form of an expression. If you click the expres-
sion builder, a dialog will help you build the expression. Following are
example expressions:

o Double the amount column: Amount * 2

o Add two columns: UnitPrice + ItemTax

e Use a Picalo function: Benfords.get_expected(Amount, 2)
7. Check the ”Active Calculation” box.

8. Click the ‘Save’ button to finish.

Script Recipe:

1 # add a calculated column to the end of a table
2 data.append_calculated (’Amount2’, int, ’Amount * 2’)
3

4 # add two columns; insert new col before Name column

5 data.insert_calculated (’Name’, ’Subtotal’, number, ’UnitPrice + ItemTax’)

6

7 # use a Picalo function; insert new col at the beginning of table

8 data.insert_calculated (0, ’Benford’, number, ’Benfords.get_expected (Amount, 2)’)
9

10 # insert a random number

11 import random

12 data.append_calculated (’'RandomNum’, number, ’random.randint (1, 10)’)

Page 28 of

CHAPTER 1. WORKING WITH TABLES Picalo Cookbook

Discussion:

The above methods insert active calculated columns, meaning that the re-
sults will constantly update and change as the source data change. If you
change the Amount cell, the first calculated column above (Amount2) will
immediately update to reflect the new value.

The final example above (random number) will recalculate a new set of
random numbers for the table every time you load or view it. The numbers
will constantly change as the expression is continually run to update the
screen.

Active calculated columns are nice because they automatically update.
However, the cost is the time it takes to calculate the value. If the source
values are static and will never change, it is more efficient to add a static
calculated column (see the static calculated recipe).

Note that the final example above (random number) depends upon the
random library. Suppose you save the table and close Picalo. When you
reopen Picalo, you must reimport the random library before loading the
table. If you reload the table first, Picalo will not be able to find the randint
function and will show an error in the cells.

Page 29 of

CHAPTER 1. WORKING WITH TABLES Picalo Cookbook

1.18 Add a Static Calculated Column to a
Table

Picalo GUI Recipe:
1. Double-click a table in the left-side project browser to view table data.

2. Select File — Table Properties... or click the ‘wrench’ icon on the
toolbar.

3. The table properties dialog shows. Navigate above or below the column
you want to add the new column by.

4. Click the ‘star’ icon on the left side of the dialog. One icon will add
the new column above the current column; the other will add below.

5. Set the new column name. Set the column type to one of the types.

6. Add a calculation in the form of an expression. If you click the expres-
sion builder, a dialog will help you build the expression. Following are
example expressions:

o Double the amount column: Amount * 2

o Add two columns: UnitPrice + ItemTax

e Use a Picalo function: Benfords.get_expected(Amount, 2)
7. Ensure the ”Active Calculation” box is unchecked.

8. Click the ‘Save’ button to finish.

Script Recipe:

1 # add a calculated column to the end of a table
2 data.append_calculated_static(’Amount2’, float , ’Amount x 27)
3

4 # add two columns; insert new col before Name column

5 data.insert_calculated_static(’Name’, ’Subtotal’, float, ’UnitPrice + ItemTax’)

6

7 # use a Picalo function; insert new col at the beginning of table

8 data.insert_calculated_static (0, ’'Benford’, float, ’Benfords.get_expected (Amount, 2)’)
9

10 # insert a random number

11 import random

12 data.append_calculated_static (’RandomNum’, int, ’random.randint (1, 10)’)

Page 30 of

CHAPTER 1. WORKING WITH TABLES Picalo Cookbook

Discussion:

Static calculated columns record only the results of the expression you enter.
The expression is used to calculate the new column values and then the
expression is disposed of.

Static calculated columns are useful when you are analyzing static data
(that will not change). They are much more efficient (i.e. faster) than ac-
tive calculated columns because the expression is only evaluated one time.
However, if the source values change, the calculated column values will not
reflect the new changes.

For example, the final example (random number) will record the new
random number, then it will never change. The value will be available on
subsequent runs of Picalo, even if the random library is not loaded.

To repeat, use static calculated columns most of the time. Only use active
calculations when you really need real-time updating.

Page 31 of

CHAPTER 1. WORKING WITH TABLES Picalo Cookbook

1.19 Remove a Column From a Table

Picalo GUI Recipe:
1. Double-click a table in the left-side project browser to view table data.

2. Select File — Table Properties... or click the ‘wrench’ icon on the
toolbar.

3. The table properties dialog shows. Navigate to the column you want
to remove.

4. Click the 'x’ button on the left side of the dialog. The column is
removed.

5. Click the ‘Save’ button to finish.

Script Recipe:

1 # delete the Name column from the table
2 data.delete_column (’Name’)
3
4 # delete the Name column from the table (alternate syntaz)
5 del data| Name’]
6
7 # delete the third column in the table
8 data.delete_column (2)
9
10 # this deletes the third row, mot the third column!
11 del data[2]
Discussion:

Columns can be deleted with either the delete_column method or the familiar
del command. You should normally refer to columns by name, where both
methods can be used.

If you refer to the column by numerical index, only the delete_column
syntax can be used. Picalo always assumes that numerical indices in square
brackets, such as [3], refer to records.

Page 32 of

CHAPTER 1. WORKING WITH TABLES Picalo Cookbook

1.20 Copy an Entire Table

Picalo GUI Recipe:
1. Double-click a table in the left-side project browser to view table data.
2. Select File — Copy Table... .
3. Enter the new table name in the dialog that comes up.

4. The new table is now listed in the left-side browser.

Script Recipe:

copy the data table to newdata
this 1is the correct syntax
newdata = data [:]

define a new wvariable to the existing table

this does NOT copy the records (see discussion)
and i1s probably the wrong syntax

newdata2 = data

Discussion:

Tables can be easily copied in Picalo. The new table is identical to the old
one, but it is an entire new copy. Any changes made to the original will not
be reflected in the new table.

Picalo has to load the entire table into memory to be able to copy it.
You’ll then have two copies of your data in memory at once. This might be
prohibitive for large tables. If this is the case, you may want to simply save
the table to disk and then copy the disk file using your operating system’s
file browser (e.g. Windows Explorer).

Copying a table in Picalo does not save the new table to disk. You need
to explicitly copy the table to disk or you’ll lose it when you close Picalo.

Programmers should note the difference between copying a table and
simply defining a new variable. The first example above makes a new copy
of the table and all its data. The second example (newdata?2 = data) simply

Page 33 of

CHAPTER 1. WORKING WITH TABLES Picalo Cookbook

defines a new variable to the existing data table. In the second example, any
changes made to newdata? will also show in data because the two variables
are pointing to a single table. It’s as if you've given a nickname to the data
table.

Page 34 of

CHAPTER 1. WORKING WITH TABLES Picalo Cookbook

1.21 Copy Part of a Table

See the section earlier in this chapter named Retrieve Several Table Records
By Index.

Page 35 of

oo W N

CHAPTER 1. WORKING WITH TABLES Picalo Cookbook

1.22 Combine Two Tables

Picalo GUI Recipe:

1. Not available.

Script Recipe:

combine datal and data2 to form data8
data3 = datal + data2

add the records of data2 to datal
datal.extend (data2)

Discussion:

Picalo supports the 4+ operation between compatible tables. Tables are com-
patible when they have the same column names and types — in other words,
the same structure. Picalo will create a third table that matches the struc-
ture of the two being added and add the records of both tables to the new
table.

The second syntax, using extend, appends all of the records of the second
table to the first table. In this case, a third table is not created. The second
table remains unchanged and the first table includes the records of both
tables.

Page 36 of

CHAPTER 1. WORKING WITH TABLES Picalo Cookbook

1.23 Delete a Table

Picalo GUI Recipe:
1. Double-click a table in the left-side project browser to view table data.
2. Select File — Remowve Table From Project...
3. A dialog comes up that allows you to do three things:

(a) Just remove the table from the project: This option will remove the
table from active memory (and free up memory for other tables).
The project will also be removed from the project.

(b) Remove the table and delete the source file from disk: This option
will remove the table from active memory and delete the Picalo
(.pco) file from disk, if the table has been saved. If the table has
been exported to CSV, TSV, or another format, these files will
not be removed.

(¢) Do nothing: This option is the same as canceling the operation.

Script Recipe:

remove the data table from the project
del data

the table remains in memory, and Picalo will
recreate the disk file when data.save() is called
7 os.remove(’c:/dir/data.pco’)
8
9 # remove the data table from the project
10 # and remove its .pco file from disk
11 del data
12 os.remove(’c:/dir/data.pco’)

1

2

3

4 # just remove the data table’s .pco file from disk
5

6

Discussion:

Page 37 of

CHAPTER 1. WORKING WITH TABLES Picalo Cookbook

There are many ways to close and/or delete a table. Simply closing its tab
(and leaving it in the left-side project browser) will remove it from memory
and free up memory for other tables. This is normally sufficient.

If you really wan to get rid of the table, you can either just remove the
table from your project or delete any associated .pco file from disk.

While it is possible to view a table from the shell or a script, it is not
possible to close a table’s tab without fully removing the table from the
project.

The os.remove function is a direct Python function that will delete any
file on your hard drive. We're using it here to remove a .pco file, but you could
just as easily delete a delimited file with the function. Note that os.remove
does not send the file to your operating system’s trash or recycle bin — it just
deletes the file permanently.

Page 38 of

Chapter 2

Working With Table Lists

Many routines, such as stratification produce lists of tables rather than single
tables. For example, suppose you have a list of employee records and you
want to stratify by employee. If you have 15 employees in the data set, you'll
end up with 15 new tables (one table per employee).

Picalo allows you to work with these lists of tables as if they were singular
tables. You can use almost all the Picalo menu commands on them, and the
functions run across the tables. In the employee example, if you add a new
calculated column to the table list, the new column will be added to all 15
tables. If you ask for descriptives on the table list, you’ll get a new table list
of 15 summary descriptives — one per table in the original list.

Picalo defines two types of table lists: TableList and TableArray. The
TableArray type is the more structured of the two. All tables in a TableArray
list must have consistent table structures, meaning they have the same col-
umn names, types, and formats. Because the tables in a TableArray list have
the same structure, Picalo allows you to use TableArray lists in place of regu-
lar Table objects in most routines. Most Picalo functions return TableArray
lists.

The TableList type is simply a list of disjointed tables. It is the looser of
the two list types in Picalo. TableLists are useful to hold a number of tables,
but since the tables they contain are not necessarily similar, they cannot be
used in most Picalo functions. Fortunately, they are not used very often —
Picalo functions almost always return TableArray objects.

Since TableArrays are the more-powerful and most-used object, this chap-
ter gives examples using TableArray.

39

o s W N =

CHAPTER 2. WORKING WITH TABLE LISTS Picalo Cookbook

2.1 Create a Table List

Picalo GUI Recipe: Many Picalo menu options, such as stratification,
create table lists. You’ll normally use these functions rather than create
table lists manually. See the recipes and manual for Picalo functions for
more information.

Script Recipe:

assuming we have three tables, combine them to a table list
tlist = TableArray(datal, data2, data3)

create a TableArray from a regular Python list
reglist = [datal, data2, data3]
tlist2 = TableArray(reglist)

Discussion:

Normally, you’d let Picalo create TableArrays by using functions like strat-
ify-by_value). If you need to create TableArrays directly, use the TableArray
constructor. In most ways, TableArray objects act like regular Python lists.

Placing tables into a table list does not copy the table data into new
tables. It simply places the existing tables into a list. Any changes made to
the list tables are made to the source tables — the two are one and the same.

Page 40 of

CHAPTER 2. WORKING WITH TABLE LISTS Picalo Cookbook

2.2 Access an Individual Table in a List

Picalo GUI Recipe:

1. Double-click a table list object in the left-side project browser to view
data.

2. Use the spinner at the top-right of the window to browser through the
tables in the list.

Script Recipe:

add a record to the first table in the list
tlist [0].append (1, ’Benny’, 25000)

W N =

4 # print the name value from the fourth table, sizxth record
5 print tlist [3][5].Name

Discussion:

Use the familiar list access idiom, the square brackets, to access tables in a
list.

Page 41 of

CHAPTER 2. WORKING WITH TABLE LISTS Picalo Cookbook

2.3 Add a Table to a Table List

Picalo GUI Recipe:

1. Not available.

Script Recipe:

1 # add a table to the end of a table list

2 tlist .append(datad)

3

4 # insert a table at the beginning of a table list
5 tlist.insert (0, datab)

Discussion:

Use the familiar list functions like insert and append to modify the tables in
a table list.

Page 42 of

CHAPTER 2. WORKING WITH TABLE LISTS Picalo Cookbook

2.4 Convert a Table List into a Table

Picalo GUI Recipe:
1. Right-click the table list in the left-side browser.

2. Select Combine Into Regular Table from the popup menu.

Script Recipe:

1 # assume we have a TableArray called tlist
2 newdata = tlist .combine ()

Discussion:

Combining a table list into a single table creates a new table comprising all
the records of the list. The original table list (and source tables) remains
unchanged. Since the records are copied into a new table, you must have
enough memory to hold the new table.

Page 43 of

Chapter 3

Basic Table Analysis

This chapter presents recipes for working with tables once they are loaded.
The routines are basic and include actions like sorting, totaling, filtering, and
so forth.

44

CHAPTER 3. BASIC TABLE ANALYSIS Picalo Cookbook

3.1 Making a Table Read-Only

Picalo GUI Recipe:
1. Double-click a table in the left-side project browser to view table data.

2. Click the read-only button at the top of the table (just to the left of
the Filter area).

Script Recipe:

1 # set read only

2 data.set_readonly (True)
3

4 # make editable again

5 data.set_-readonly (False)

Discussion:

When analyzing tables, it is often important to set them as read-only so
you don’t accidentally change their data. By simply clicking the read-only
button, you can ensure that tables are not modified during analysis.

Database tables (retrieved from a database connection) are always read-
only and cannot be modified. Use INSERT and UPDATE queries to modify
database tables.

Page 45 of

CHAPTER 3. BASIC TABLE ANALYSIS Picalo Cookbook

3.2 View Table Descriptives

Picalo GUI Recipe:
1. Double-click a table in the left-side project browser to view table data.
2. Select Analyze — Descriptives... .

3. A new table shows containing the descriptives for the table.

Script Recipe:

1 data_descriptives = Simple.describe (data)

data_descriptives.view ()

Discussion:

Descriptives are an important first step you should always complete when
analyzing a table. Descriptives show basic statistics, control totals, and
record counts. You should use these types of descriptives to ensure that your
data imported correctly, were typed to the correct type without problems,
and no records were missed.

Most of the descriptives are self-explanatory. The NumEmpty, NumNone,
and NumZero are subtly different. The NumEmpty descriptive tells you how
many cells are the empty string (””). The NumNone descriptive tells you
how many cells are set to the None type, regardless of the column type (since
any cell anywhere in a table can be set to None). The NumZero descriptive
tells you how many cells are set to 0 (for numerical typed columns).

Page 46 of

CHAPTER 3. BASIC TABLE ANALYSIS Picalo Cookbook

3.3 Validate Column Data

Picalo GUI Recipe:
1. Double-click a table in the left-side project browser to view table data.

2. Click the "magic wand” icon in the Filter Expression area (just above
the table).

3. Type a pattern using either wildcard syntax or regular expression syn-
tax. Example patterns are in the discussion area below.

4. Check the FEzclude Matching Records radio button. This will filter
out all records that match the pattern, showing records that do not
validate.

5. Repeat the process for each column you wish to validate.

Script Recipe:

add a filter to the table
data. filter (’not Simple.wildcard-match(?#7?+”’, ColName)

Discussion:

One of the most common tasks after loading data into Picalo is to validate
that all data in a given column follows a certain pattern. For example, you
may want to leave all columns as string types when importing delimited files
(assigning column types directly in the wizard may throw errors on values
that can’t be converted correctly). Then use Picalo’s filtering functions to
validate the values in each column, such as email addresses, numbers, date
formats, or other validations. Once validated, you can then go to Table
Properties and assign the correct column types with confidence. This pattern
works well when working with poorly-formatted data or with files that have
known errors in them.

Page 47 of

CHAPTER 3. BASIC TABLE ANALYSIS Picalo Cookbook

Picalo provides two methods of pattern matching: wildcards and regular
expressions. Wildcards are easy to create and are less prone to errors. Reg-
ular expressions are more powerful but require understanding of a complex
pattern matching language. Picalo’s Filter Table dialog, as shown in the GUI
recipe above, makes filtering easy.

Wildcard patterns support only three special characters: #, 7, and *. All
other characters are matched literally. The special characters are as follows:

e A pound sign (#) matches a single number: 0, 1, 2, 3,4, 5, 6, 7, 8, or
9.

e A question mark (7) matches a single letter: A-Z or a-z. Regardless of
the ignorecase flag in the function, the question mark always matches
any letter (upper or lower).

e A star (*) matches zero or more letters (7) or numbers (#). It matches
an empty string, ‘aaa’, ’a903j’, and "A523BC’. It tries to match as many
characters as it can, until it hits a non-letter and non-number character
like a space, punctuation mark, or any other special character.

Wildcards are limited to keep them simple and easy. With wildcards,
you cannot match a literal pound sign (since it is always interpreted as a
placeholder for a number), use a hard return (since we have no character on
the keyboard for it), or employ boolean logic (either-or situations). If you
need these capabilities, it’s time to step up to full regular expressions.

The following are example wildcard patterns:

o 1-###-###—#### matches a US or Canada phone number. The field
must start with a literal 1-, then three numbers, another -, three num-
bers, another -, and four numbers.

e 7x@7*.77* is a simple way to match an email address. It looks for
a letter followed by other letters or numbers, then an @ sign, then a
letter followed by other letters or numbers, then two letters followed
by other letters or numbers (for the country code or top-level domain).
Note that usernames with a dot in them (like homer.simpson@tv.com)
or that start with a number (like 5Shom@tv.com) will not match this
pattern.

Page 48 of

CHAPTER 3. BASIC TABLE ANALYSIS Picalo Cookbook

Regular expressions are one of the oldest and most widely-used pattern
matching languages in computers today. Almost all modern computer lan-
guages, and many applications, support matching via regular expression pat-
terns. Picalo uses Python’s built-in regular expression engine, so you can have
confidence that your patterns will be interpreted correctly and in a standard
way.

The syntax of regular expressions is beyond this discussion. Readers
are encouraged to search the Internet for information on and examples of
regular expression. Python’s particular dialect is described at http://docs.
python.org/dev/howto/regex.html.

In addition to Simple.regex_match, Python’s standard re module is avail-
able in all Picalo expressions and scripts. While Simple.regex_match returns
only a True/False match answer, the full re module allows group matching,

look aheads and look behinds, field substitution, and many more features.
The following are examples of regular expression patterns:

4@\ \w{2,4}$

The above example is a simple regex to match email addresses. Much more
powerful patterns for email addresses can be found online.
1-\d{3}-\d{3}-\d{4}

This example matches a US or Canada phone number. The

d{3} specifies three numbers.

“P(ost){0,1}\.{0,1} =O(ffice){0,1}\.{0,1} *Box$

This is a great example of the power of regular expressions because a single
pattern can match so many different (but valid) values. It matches P.O. Box,
P. O. Box, Post O. Box, post office box, post. office. box, and many other
variations of the words.

Page 49 of

http://docs.python.org/dev/howto/regex.html
http://docs.python.org/dev/howto/regex.html

CHAPTER 3. BASIC TABLE ANALYSIS Picalo Cookbook

3.4 Total a Column

Picalo GUI Recipe:
1. Double-click a table in the left-side project browser to view table data.
2. Select Analyze — Descriptives... .
3. A new table shows containing the descriptives for the table.

4. The Total descriptive gives you the total of each column.

Script Recipe:

1 # sum the Amount column
2 total = sum(data[’Amount’])
3 print total

Discussion:

Totaling a column (or doing any summary calculation on a column) uses the
table[’colname’] syntax to retrieve a column. Since columns are like Python
lists, you can use any list-oriented function on them. Common functions
include sum, mean, stdev, variance, max, and min.

Page 50 of

=

= O © 0 N O Uk W N

CHAPTER 3. BASIC TABLE ANALYSIS Picalo Cookbook

3.5 Analyze Each Record in a Table

Picalo GUI Recipe:

1. Not available.

Script Recipe:

iterate across each record
for rec in data:
rec [’Amount’] = round(rec[’Amount’], 2)

iterate across each record with the record index
for i, rec in enumerate(data):
rec[’RecNo’] = i

iterate with just an index
for i in range(len(data)):
table [i][’Amount’] = round(table[i][Amount’], 2)

Discussion:

Use a for loop to iterate across an entire table, one record at a time. The
code will run for each record in the table, with the rec variable set to each
record as the iteration progresses. The first example rounds each value in
the Amount column to two decimal places.

Normally, you don’t need to know the index of each record (i.e. record
number) as you iterate. Just getting a reference to the actual record is enough
to accomplish your task.

If you need to know each record number, use the enumerate function
(second example) to set i to the index as you iterate.

If you only need the record number, use the familiar Python range and
len functions to go through the entire table. This method does not give you
a reference to each record — you need to use the table variable.

Page 51 of

0 N O Ut AE W N

e e e e
N O Uk W= OO

CHAPTER 3. BASIC TABLE ANALYSIS Picalo Cookbook

3.6 Search a Table

Picalo GUI Recipe:
1. Double-click a table in the left-side project browser to view table data.
2. Select FEdit — Find and Replace... .

3. Enter the text to search for and click the Find button.

Script Recipe:

search for all cells with of AMC Corp
for rec in data:
for cell in rec:
if cell = ’AMC Corp’:
print ’Found AMC’

search within cells for AMC”
for rec in data:
for cell in rec:
if "AMC’ in str(cell):
print ’Found AMC somewhere in the cell’

search within cells for 7AMC” (case insensitive)
for rec in data:
for cell in rec:
if ’amc’ in str(cell).lower ():
print ’Found AMC somewhere in the cell’

Discussion:

The Picalo GUI supports direct find and replace within an open table. It has
options for starting at the top of the table, matching within cells or entire
cells, and case sensitivity.

In code, search and replace requires a double for loop to first loop through
records and then through the cells in each record. The examples above show
how to search for entire and partial cell matches. Case insensitivity is easy
to do with the lower function, which will convert any cell text into lowercase.

Picalo has more advanced ways of searching as well. In fact, Picalo itself
is primarily a searching application. These are described in other recipes.

Page 52 of

CHAPTER 3. BASIC TABLE ANALYSIS Picalo Cookbook

e Discovery of duplicate values in a column.
e Discovery of gaps in sequence.

e Selection of records based upon an exact value or an arbitrary expres-
sion. Selection by expression is limited only by your imagination.

e Identification of outliers using z-score or other methods.

e Finding of matching or non-matching records between tables.
e Use of database queries to find records.

e Fuzzy matching of strings.

e Wildcard matching using #, ?, and *.

e Regular expressions, the ultimate in pattern and mask searching.

Page 53 of

oW N e

CHAPTER 3. BASIC TABLE ANALYSIS Picalo Cookbook

3.7 Filter a Table

Picalo GUI Recipe:
1. Double-click a table in the left-side project browser to view table data.

2. Enter an expression in the Filter box at the top of the table and click
the Set button. The 'magic wand’ button opens the expression builder
to help you build an expression. Example expressions are as follows:

e InvoiceNumber == 15
e InvoiceNumber ; 15 and InvoiceNumber j 50
e Name == "AMC Corp’

e 'amc’ in Name.lower()

Script Recipe:

”))

data. filter amc’ in Name.lower ()”)

data. filter (”InvoiceNumber = 157)
data. filter (”InvoiceNumber > 15 and InvoiceNumber < 507)
data. filter (”Name = ’AMC Corp’”)

(

Discussion:

Filtering is an essential function for analyzing data in tables. Filtering re-
moves all records (rows) from a table that are not pertinent to your analysis.
The removed records are not actually deleted, but only temporarily hidden.
Hidden records are excluded from almost all functions in Picalo — as if they
were not in the table at all. These records can be restored at anytime. You
should read the tutorial on filtering in the introductory manual for a detailed
introduction to this topic.

Expressions must be valid Python expressions that evaluate to True or
False. Records that evaluate to True are shown, those evaluating to False
are hidden. Remember that the operator for equality testing is the double
equals sign (==), not the single equals sign (=).

Page 54 of

CHAPTER 3. BASIC TABLE ANALYSIS Picalo Cookbook

The record index of the table records will change when a table is filtered.
In other words, the visible records will still be indexed as 0, 1, 2, 3, 4, etc. If
you had 10 records before filtering (and filtering made 5 of them hidden), you
now have indices 0, 1, 2, 3, and 4, and the length of the table is temporarily
5. Releasing the filter will restore the original indices and table length.

Filtering is very similar to selecting by expression. Both use expressions
to select matching records. The difference is selecting creates a new table of
matching records and leaves the existing table unchanged. Filtering just hides
nonmatching records within the existing table. Filtering is more efficient
because it doesn’t make a copy of the records.

Page 55 of

o G W N =

CHAPTER 3. BASIC TABLE ANALYSIS Picalo Cookbook

3.8 Filter a Table Using Wildcards

Picalo GUI Recipe:

1.

2.

Double-click a table in the left-side project browser to view table data.

Enter an expression in the Filter box at the top of the table and click the
Set button. Use one of several available functions to enable wildcard
matching. Example expressions are as follows:

e 'Maple’ in NameCol

e 'maple’ in NameCol.lower()

e NameCol.find("Maple’) ;=0 and NameCol.find("Maple’); 5

e Simple.fuzzymatch(’Maple’, NameCol) ; 0.3

e Simple.wildcard_match("Maple *’, NameCol’)

e Simple.regex_match(’.*Maple +Street’, NameCol)

Script Recipe:

data. filter (” ’Maple’ in NameCol”)

data. filter (” "maple’ in NameCol.lower ()”)

data. filter (”NameCol. find (’Maple’) >=0 and NameCol. find (’Maple’)< 5”)
data. filter (”Simple. fuzzymatch (’Maple’, NameCol) > 0.37)

data. filter (”Simple. wildcard_match (’Maple *’, NameCol’)”)

data. filter (”Simple.regex\ _match (’.* Maple +Street ’, NameCol)”)
Discussion:

Picalo tables can be filtered with wildcards in several ways. Readers should
first read the previous recipe, Filtering a Table to learn basic filtering tech-
niques. This recipe presents more advanced concepts related to filtering
string-typed columns with wildcards.

The formulas used in the above examples are described as follows:

Page 56 of

CHAPTER 3. BASIC TABLE ANALYSIS Picalo Cookbook

Note that these formulas can also be used in the Data

’Maple’ in NameCol: This is probably the most simple way of looking
for inexact matches. The formula uses Python’s native in keyword,
which returns true if the left side ("Maple’) is found anywhere in the
right side (NameCol).

'maple’ in NameCol.lower(): A variation on the last formula, this
expression uses the string lower method to convert the value in NameCol
to lowercase before comparing. Since ‘'maple’ is also given in lowercase,
the effect is a case-insensitive match.

NameCol.find(’Maple’) >=0 and NameCol.find(’Maple’)< 5: This
expression uses the string find method to get a more specific result than
the previous formulas. The find method returns the index that "Maple’
starts on. For example, if a cell contained '30 Maple Street’, find re-
turns 3, indicating that the words starts in the third index (remember,
zero-based). If the word is not found anywhere in the cell, the method
returns -1 (hence the ;=0 part).

Simple.fuzzymatch(’Maple’, NameCol) > 0.3: This expression uses
Picalo’s fuzzymatch function to get an approximate match. The func-
tion returns a value between 0 and 100 percent; the example is look-
ing for approximate matches greater than 30 percent. See the Sim-
ple.fuzzymatch documentation for more information on this excellent
function.

Simple.wildcard match(’Maple *’, NameCol’): This expression uses
Picalo’s wildcard terms to find the word Maple, then a single space,
then any other word. See Recipe for more information on this type
of wildcard matching.

Simple.regex match(’.*Maple +Street’, NameCol): This expres-
sion is the most advanced and powerful method of searching. It uses
Python’s regular expression library. Regular expressions are one of the
most useful pattern matching languages in existence (they are avail-
able in most modern computer languages). This example looks for
some text, followed by 'Maple’, then one or more spaces, then 'Street’.
See Recipe for more information on this type of wildcard matching.

Select —

By Fxpression dialog.

Page 57 of

CHAPTER 3. BASIC TABLE ANALYSIS Picalo Cookbook

3.9 Clear a Filter from a Table

Picalo GUI Recipe:
1. Double-click a table in the left-side project browser to view table data.

2. Click the Release button to release the filter.

Script Recipe:

1 data.clear_filter ()

Discussion:

Clearing a filter removes the filter expression from a table. All records in the
table are restored to the table. The original record indices and table length
are restored.

Page 58 of

CHAPTER 3. BASIC TABLE ANALYSIS Picalo Cookbook

3.10 Sort a Table

Picalo GUI Recipe:
1. Double-click a table in the left-side project browser to view table data.
2. Select File — Sort... .

3. Select the fields to sort by in the dialog that comes up.

Script Recipe:

1 # sort data (ascending) by InvoiceNum, then Date

2 Simple.sort (data, True, ’InvoiceNum’, ’Date’)

3

4 # sort data (descending) by InvoiceNum, then Date

5 Simple.sort (data, False, ’InvoiceNum’, ’Date’)
Discussion:

The Picalo GUI supports sorting a table by up to three fields. The script
language supports sorting by any number of fields.

The Simple.sort method requires that all fields be sorted ascending or
descending. For increased flexibility, use the table.sort method to sort a table
using the standard Python sort idiom. See the Python sorting mini-tutorial
for more information on this type of advanced sorting.

Page 59 of

Chapter 4

Loading and Saving Data

Picalo supports loading and saving data in many formats. The primary
Picalo format, .pco, saves all information about a table, including column
names, types, etc. Picalo format is suitable for small- and medium-sized
tables.

The best practices method of keeping data in Picalo is to connect it to a
data warehouse using MySQL, PostgreSQL, or another ODBC data source.
This allows the database to do what it was programmed to do (store data)
and Picalo to do what it was primarily programmed to do (analyze data).

Picalo supports importing and exporting of delimited text files (.tsv, .csv,
txt), fixed width text files (usually .txt), and classic Excel files (.xls).

60

CHAPTER 4. LOADING AND SAVING DATA Picalo Cookbook

4.1 Load a Picalo Table

Picalo GUI Recipe:
1. Select File — Open Tauble... .

2. Navigate to the table you want to open and click ‘Open’.

Script Recipe:

1 data = load (”c:/MyFiles/data.pco”)

Discussion:

The primary Picalo format, .pco, contains all information about a table,
including column names, types, etc. Picalo format is suitable for small- and
medium-sized tables. If you have an extremely large table, use a database.

Page 61 of

[un

O © 0 N O U W N =

CHAPTER 4. LOADING AND SAVING DATA Picalo Cookbook

4.2 Import a Delimited Text File

Picalo GUI Recipe:
1. Select Data — Data Import Wizard...

2. Follow the wizard instructions for the type of file you are importing.

Script Recipe:

load a tab—separated file

data = load_tsv(’c:/MyFiles/data.tsv’, header_-row=True)
data.set_type(’Amount’, float)
data.set_type(’BirthDate’, Date)

load a comma—separated file
data2 = load_tsv (’c:/MyFiles/data.csv’, header.row=True)

load a custom delimited—text file
data3 = load_delimited (’c:/MyFiles/data.txt’, header-row=True, delimiter="""

Discussion:

Delimited text files are one of the most common file formats used to transfer
data between applications. If the application you are retrieving data from
can output tab-separated, comma-separated, or other delimited files, Picalo
will have no problem importing the file.

Delimited text files use a delimiter character, such as a comma or a tab,
to separate the fields in each row. The first row of text is usually the field
headers, but sometimes the headers are not included. Be sure to get the data
dictionary (also called schema) from the source application so you know the
fields you are getting.

Since delimited text files do not include column types, Picalo assumes all
data are string/unicode values. The data import wizard will help you set the
column types to the right types. Scripts need to call set_type after loading
the delimited file.

Page 62 of

, qualifier=""")

s ow e

CHAPTER 4. LOADING AND SAVING DATA Picalo Cookbook

4.3 Import a Fixed Width Text File

Picalo GUI Recipe:
1. Select Data — Data Import Wizard...

2. Follow the wizard instructions for the type of file you are importing.
The wizard will allow you to click on the table to define where columns
start and finish.

Script Recipe:

load a fized—width file with four columns

data = load_fixed (’c:/MyFiles/data.tsv’, [0, 12, 19], header_row=True)
data.set_type(’Amount’, float)

data.set_type(’BirthDate’, Date)

Discussion:

Fixed width files use white space to separate the fields in each row. Fixed
width files are commonly used in legacy applications, especially in applica-
tions built in the 1970’s and 1980’s. Fields start and end at exact character
positions, such as position 0, 12, and 19. Use a list of numbers to define the
starting location of each column. The wizard lets you define these positions
by simply clicking the mouse on an a sample from your data.

The first row of text is usually the field headers, but sometimes the head-
ers are not included. Be sure to get the data dictionary (also called schema)
from the source application so you know the fields you are getting.

Since fixed width text files do not include column types, Picalo assumes
all data are string/unicode values. The data import wizard will help you
set the column types to the right types. Scripts need to call set_type after
loading the delimited file.

Page 63 of

oW o e

CHAPTER 4. LOADING AND SAVING DATA Picalo Cookbook

4.4 Import an EBCDIC Data File

Picalo GUI Recipe:

1. Not available.

Script Recipe:

load the data into a new table, specifying column positions as 0—2, 2—7, and 7—18

data = load_fixed(’test.txt’, [0,2,7,13], encoding="cp037’, line_separators=False)
data.set_type(’id’, int)

data.set_type(’salary’, number)

Discussion:

Extended Binary Coded Decimal Interchange Code (EBCDIC) is an 8-bit
character encoding created by IBM for use on its mainframes. It is a widely
despised character encoding, but it is often the only available export from
older systems. One of the primary reasons programmers dislike it is it
matches character code numbers to the old punch card locations.

It is important to understand exactly what EBCDIC is and what it is not.
It is not a data structure like comma separated values or XML. EBCDIC is
merely a matching of keyboard characters to code numbers for representation
inside the computer. For example, the letter ‘a’ is hex code 61, ‘b’ is hex
code 62, and so forth. EBCDIC is an alternative to the more popular ASCII
or UTF-8 encodings.

Picalo can handle any number of encodings, of which EBCDIC is only one.
Other popular encodings are latin_1, iso8559_2, utf-8, utf-16, mac_roman, and
of course, ascii. The available codecs are listed in the codecs module at:

http://docs.python.org/lib/standard-encodings.html

EBCDIC is encoding ‘cp037’ in Picalo, which specifies the English version
of EBCDIC.

Because EBCDIC simply defines the character numbers, the table data
can actually be any structure. It could be stored as comma-separated values,
fixed format, or even XML! It is impossible for Picalo to guess what export
structure an application used.

Page 64 of

http://docs.python.org/lib/standard-encodings.html

D Utk W N

CHAPTER 4. LOADING AND SAVING DATA Picalo Cookbook

Fortunately, many mainframes export data in fixed-width format without
line separators. It is this structure that the recipe loads. ‘Without line
separators’ means that the data file simply runs one line of data onto the
end of the ones before it, without any hard returns (enter key characters).
This makes it a little more difficult to load because you have to exactly
specify the column start and end positions, but Picalo can load it just fine.
The line_separators=False parameter tells the load fixed function to
not look for hard returns in the file. The following example shows a file with
three records, all run into a single line:
idname salary01Marge05000002Dan 004500

The actual table looks like this:

Il

T T T
id | name | salary |

} |

01 | Marge | 050000 |
02 | Dan | 004500 |
| |

|
T
| I
T T T T
|
T

The column positions, given as [0, 2, 7,13], specify three columns.
The notation is inclusive of the starting character and exclusive of the ending
character.

Page 65 of

CHAPTER 4. LOADING AND SAVING DATA Picalo Cookbook

4.5 Import an XML Data File

Picalo GUI Recipe:

1. Not available.

Script Recipe:

import xml.dom.minidom

document = xml.dom.minidom. parse(’c:/temp/mydata.xml’)
root_element = document.documentElement

nmow that we have the root element, parse the dom tree for data

Discussion:

Python’s xml libraries can import any type of xml file, although you have
to write the code manually to import the data and populate a Picalo ta-
ble. See the standard documentation for the Python xml libraries for more
information.

Page 66 of

CHAPTER 4. LOADING AND SAVING DATA Picalo Cookbook

4.6 Import a Microsoft Excel File

Picalo GUI Recipe:
1. Select Data — Data Import Wizard...

2. Follow the wizard instructions for Excel files. It will allow you to enter
the starting and ending cells to import.

Script Recipe:

data = load_excel(’c:/MyFiles/data.xls’, ’Sheetl’, ’Al’, ’C200’, header_row=True)
data.set_type(’Amount’, float)
data.set_type(’BirthDate’, Date)

Discussion:

Picalo can read native Excel files. Since spreadsheets don’t always start with
the first cell (and don’t always contain the data you want on the first sheet),
the method allows you to enter the sheet name as well as the cell range to
import.

Since Excel columns are not explicitly typed, Picalo initializes the table
with string/unicode column types. After you import the data, set column
types to their correct types.

Page 67 of

gL W N

CHAPTER 4. LOADING AND SAVING DATA Picalo Cookbook

4.7 Save a Picalo Table

Picalo GUI Recipe:
1. Double-click a table in the left-side project browser to view table data.

2. Select File — Save Table . Enter the filename and click ‘Save’.

Script Recipe:

save all records
data.save(’c:/temp/myfile.pco’)

save only records matching the current filter
data.save(’c:/temp/myfile.pco’, respect_filter=True)

Discussion:

The primary Picalo format, .pco, contains all information about a table,
including column names, types, etc. Picalo format is suitable for small-
and medium-sized tables. While there is no inherent limit to the number of
records you can save into a .pco file, using a database for large data sets is
more efficient.

If the table is filtered (and some records are hidden), the method ignores
the filter and saves all records. If you want to save only the filtered records,
use the format of the second example.

Page 68 of

0 N O U R W N =

CHAPTER 4. LOADING AND SAVING DATA Picalo Cookbook

4.8 Export a Delimited Text File

Picalo GUI Recipe:
1. Double-click a table in the left-side project browser to view table data.

2. Select File — Export Table... . Select the appropriate file type (CSV,
TSV, etc.) and click ‘Save’.

Script Recipe:

save a tab—separated file
data.save_tsv(’c:/mydata/mytable.tsv’)

save a comma—separated file
data.save_csv(’c:/mydata/mytable.csv’)

save a custom delimited file
data.save_delimited (’c:/mydata/mytable.csv’, delimiter=""")

Discussion:

Delimited text is one of the most common transfer formats available today.
It is understood by almost any data-enabled application, including most
databases.

The Picalo functions allow you to set the delimiter, qualifier, line ending
(Unix or Windows file endings), and encoding (for international files). In
addition, you can indicate whether you want any table filters respected or
not (see recipe [4.7)).

The method will automatically take care of delimiters or qualifiers in the
actual field data. For example, if you have a comma in one of your field
values, you can still use CSV format. The use of special characters, such as
a tilde because you don’t expect a tilde in your data, is unnecessary.

Delimited text files do not contain any data typing information — all
data will be seen as strings in the output file. You will lose any column
expressions and filters. Use delimited text format only when you need to
export to another application.

Page 69 of

CHAPTER 4. LOADING AND SAVING DATA Picalo Cookbook

4.9 Export a Fixed Width File

Picalo GUI Recipe:

1. Not available

Script Recipe:

data.save_fixed (’c:/mydata/mytable.tsv’)

Discussion:

Fixed width files use white space to separate the fields in each row. Fixed
width files are commonly used in legacy applications, especially in applica-
tions built in the 1970’s and 1980’s. Fields start and end at exact character
positions, such as position 0, 12, and 19. Picalo will automatically determine
the column positions based on the data in your table. The method param-
eters allow you to indicate whether you want any table filters respected or
not (see recipe [4.7)).

Fixed width text files do not contain any data typing information — all
data will be seen as strings in the output file. You will lose any column
expressions and filters. Use fixed text format only when you need to export
to another application. If the application you are exporting to can read both
delimited text and fixed width text files, I recommend delimited text files as
they are more explicit and more widely used.

Page 70 of

CHAPTER 4. LOADING AND SAVING DATA Picalo Cookbook

4.10 Export an XML Data File

Picalo GUI Recipe:

1. Not available.

Script Recipe:

data.save_xml(’c:/mydata/mytable.xml’)

Discussion:

Picalo can export tables to a specific xml format. This is a one-way transfer;
Picalo does not automatically read the xml file back into a table (you’d have
to write that code yourself using Python’s xml libraries). The method saves
as much information as possible, including column types and formats.

The xml saving functionality is included to allow export to applications
that only take xml. The method signature allows definition of line endings
(Unix or Windows), the indent character for prettier xml, a compact flag for
more compact xml, and other options.

Page 71 of

CHAPTER 4. LOADING AND SAVING DATA Picalo Cookbook

4.11 Export a Microsoft Excel File

Picalo GUI Recipe:
1. Double-click a table in the left-side project browser to view table data.

2. Select File — FExport Table... . Select the the Excel file type and
click ‘Save’.

Script Recipe:

data.save_excel (’c:/ myfiles /mydata. xls)

Discussion:

Picalo can save to the native Excel .xIs format. It saves your data in Sheetl
starting with cell Al. All column types and formats will be lost in the
process. You can indicate whether you want any table filters respected or

not (see recipe [4.7).

Page 72 of

Chapter 5

Working With Databases

The best practices method of keeping data in Picalo is to connect it to a data
warehouse using MySQL, PostgreSQL, or another ODBC data source. This
allows the database to do what it was programmed to do (store data) and
Picalo to do what it was primarily programmed to do (analyze data).

Picalo provides access to relational databases through the Database mod-
ule. It comes with the drivers for three types of connections: ODBC, Post-
greSQL, and MySQL. The ODBC driver can connect to any type of database
you can set up an ODBC connection for.

73

0 N O Uk W N =

CHAPTER 5. WORKING WITH DATABASES Picalo Cookbook

5.1 Connect to a Database

Picalo GUI Recipe:
1. Select Data — Connect to Database... .

2. In the dialog that comes up, select your type of database, and fill out
the fields for your settings.

3. Click OK. Your database connection is now ready for use by the other
options under the Data menu.

Script Recipe:

use an ODBC connection with dsn ’mydb’
conn = Database.OdbcConnection(’mydb’, username='me’, password=’ps’)
conn. close ()

create a PostgreSQL connection to ’‘mydb’
conn2 = Database.PostgreSQL ('mydb’, username='me’, password=’ps’)
conn2. close ()

create a PostgreSQL connection to ’yourdb’ on a different computer
conn3 = Database.PostgreSQL (’yourdb’, username=’me’, password=’ps’, host=’10.0.5.1")
conn3. close ()

create a MySQL connection to ’‘mydb’
conn4 = Database. MySQLConnection(’mydb’, username='me’, password=’ps’)
conn4 . close ()

Discussion:

Picalo includes the drivers for three types of databases: ODBC, PostgreSQL,
and MySQL. ODBC connections allow you to connect to almost any rela-
tional database in existence. Picalo’s ODBC connection requires that you
install and set up an ODBC driver in your operating system. In Windows,
first install the ODBC driver for your database. ODBC drivers can be down-
loaded for free from most database vendor sites. Once the driver is installed,
go to Control Panel — Administrative Tools — ODBC and set up the con-
nection.

Page 74 of

CHAPTER 5. WORKING WITH DATABASES Picalo Cookbook

Picalo’s PostgreSQL and MySQL drivers allow direct connections to these
databases (without the need to set up ODBC connections). Both of these
databases are free to use, and both are excellent options for all but the very
largest installations.

Note that with all Picalo connections, transactions are used for data
changes. You must call conn.commit() to make your changes permanent
in the database.

Page 75 of

CHAPTER 5. WORKING WITH DATABASES Picalo Cookbook

5.2 View Database Tables

Picalo GUI Recipe:
1. Connect to a database so it is listed in the left-side object browser.

2. Click the little plus symbol next to the database name to expand the
tree item. The tables in the database will be listed.

3. For efficiency reasons, Picalo does not automatically refresh the list of
tables. If new tables are created on the database server, right-click the
database connection and select Refresh .

Script Recipe:

1 # list the tables in mydb

2 conn = Database.OdbcConnection(’mydb’, username=’me’, password=’ps’)
3 for tablename in conn.list_tables ():
4 print tablename

5 conn. close ()

Discussion:

Picalo can read the public tables from the database. Each time you call
list_tables() (or select Refresh from the popup menu), Picalo queries the
database to get a fresh list of tables.

Page 76 of

oW N e

CHAPTER 5. WORKING WITH DATABASES Picalo Cookbook

5.3 Run an SQL Query

Picalo GUI Recipe:
1. Connect to a database so it is listed in the left-side object browser.
2. Select Data — Run Visual Query... .

3. The Visual Query dialog helps you build an SQL statement. You can
also type the SQL directly in the text box at the bottom of the dialog.

Script Recipe:

conn Database.OdbcConnection (’'mydb’, username='me’, password=’ps’)
data = conn. table (?SELECT * FROM mytable”)

do something with table

conn. close ()

Discussion:

One of Picalo’s greatest strengths is its ability to query databases directly.
Result records are pulled from the database in a just-in-time format, so
even the largest queries should come back from the database as soon as the
database has results.

The table() method (used by the Visual Query dialog as well) is normally
the best way to query a database. Picalo takes the results returned from
the query and creates a Picalo table, with column names, types, etc. These
query-based tables can then be used in all Picalo dialogs and functions.

Query-based tables are always read-only. If you want to change the source
data, use an INSERT or UPDATE query. It is not possible to change the
read-only status of these tables. If you need to change the data in the table
(but not in the database), copy the query-based table to a regular Picalo
table (see Recipe [1.20)).

If you have an extraordinarily large results set that cannot be contained
in memory, iterate over the result set (see Recipe .

Page 77 of

AW e

CHAPTER 5. WORKING WITH DATABASES Picalo Cookbook

5.4 Run an SQL Query Efficiently

Picalo GUI Recipe:

1. Not available.

Script Recipe:

conn = Database.OdbcConnection(’mydb’, username='me’, password=’ps’)
for rec in conn.query (”SELECT * FROM mytable”):

print ”The name is:”, rec[Name’]
conn. close ()

Discussion:

This recipe is very similar to the previous one on querying records into a
Picalo table (Recipe , but it is much more efficient. It works even if
you have hundreds of millions of records in your database. Generally, you
should use the previous recipe, using the table function rather than query.
The table function allows you to skip around in the records, go forwards and
backwards, further filter the results, and use the results in Picalo functions.

The subtle difference in the two methods is the use of conn.query in this
recipe. This method allows only iteration over the result set, one record at
a time, as shown in the example. In other words, you must go through the
records one at a time, from start to finish. No going backwards, skipping
around, etc.

The reason this method is so efficient is Picalo only loads one record at a
time from the database, so it uses almost no system resources on the Picalo
side.

Page 78 of

© 0 N O UA W N

NN NNNN R B B e e e e e e
[N R N R e R A I SIS

CHAPTER 5. WORKING WITH DATABASES Picalo Cookbook

5.5 Insert a Record into a Database

Picalo GUI Recipe:

1. Not available.

Script Recipe:

insert a record via standard SQL

conn = Database.OdbcConnection(’mydb’, username='me’, password=’ps’)
id = 15
nm = ’Barry’

conn.execute ("INSERT INTO mytable (id, name) VALUES (%s, %s)’, (id, nm)”)
conn . commit ()
conn. close ()

insert a record wvia string concatenation (less effective method)

conn = Database.OdbcConnection(’mydb’, username='me’, password=’ps’)

id = 15

nm = ’Barry’

conn.execute ("INSERT INTO mytable (id, name) VALUES (” + id + 7, 7 4+ nom + ”’)”)

conn . commit ()
conn. close ()

insert a record wvia a query builder

conn = Database.OdbcConnection(’mydb’, username='me’, password=’ps’)
id = 15
nm = ’Barry’

gb = conn.insert_query_builder (’mytable’)
gb.add(’id’, id)

gb.add(’name’, nm)

gb.execute ()

conn . commit ()

conn. close ()

Discussion:

The first example of inserting records in this recipe is the most succinct. It
uses the standard Python driver method of writing the SQL statement your-
self. Field values are denoted with a percent sign in the first parameter, the
SQL. The second parameter is a tuple (or list) of values to be inserted into
the SQL statement upon execution. This is the preferred way of construct-
ing SQL statements manually because it allows the driver to handle special

Page 79 of

CHAPTER 5. WORKING WITH DATABASES Picalo Cookbook

characters (like commas or quotes) automatically. Note that the second %s
in the string does not require single quotes, even though the nm variable is
a string.

The second example in this recipe uses string concatenation to build the
query string. This method is generally a poor way to construct SQL because
it is fragile. If quote or comma characters appear in the values (like nm
above), the SQL string will not execute. In addition, this method is subject
to SQL injections and other security problems. The first example solves all
of these problems automatically by allowing the driver to lay the values into
the SQL.

The third example shows Picalo’s query builder feature. This feature
allows more robust creation of SQL and more readable code. The method
builds the SQL piece by piece rather than all in one statement.

Note that with all the above methods, you must call commit to make
your changes permanent. If you forget this step, all your changes will be lost
when you close the connection.

Page 80 of

© 0 N O UA W N

NN NN N R B R e e e e e
[N R N e R R A R SRS

CHAPTER 5. WORKING WITH DATABASES Picalo Cookbook

5.6 Update a Record in a Database

Picalo GUI Recipe:

1. Not available.

Script Recipe:

update a record wvia standard SQL

conn = Database.OdbcConnection(’mydb’, username='me’, password=’ps’)
id = 15
nm = ’Danny’

conn.execute ("UPDATE mytable SET name=%s WHERE id=%s” , (nm, id))
conn . commit ()
conn. close ()

update a record wvia string concatenation (less effective method)

conn = Database.OdbcConnection(’mydb’, username='me’, password=’ps’)
id = 15
nm = ’Danny’

conn . execute ("UPDATE mytable SET name=’" + nm + ”’ WHERE id=" + id)
conn . commit ()
conn. close ()

insert a record wvia a query builder

conn = Database.OdbcConnection(’mydb’, username='me’, password=’ps’)
id = 15
nm = ’Danny’

gb = conn.update_query_builder (’mytable’)
gb.add(’name’, nm)

gb.add-where(’id’, id)

gb.execute ()

conn . commit ()

conn. close ()

Discussion:

The first example of updating records in this recipe is the most succinct. It
uses the standard Python driver method of writing the SQL statement your-
self. Field values are denoted with a percent sign in the first parameter, the
SQL. The second parameter is a tuple (or list) of values to be inserted into
the SQL statement upon execution. This is the preferred way of construct-
ing SQL statements manually because it allows the driver to handle special

Page 81 of

CHAPTER 5. WORKING WITH DATABASES Picalo Cookbook

characters (like commas or quotes) automatically. Note that the second %s
in the string does not require single quotes, even though the nm variable is
a string.

The second example in this recipe uses string concatenation to build the
query string. This method is generally a poor way to construct SQL because
it is fragile. If quote or comma characters appear in the values (like nm
above), the SQL string will not execute. In addition, this method is subject
to SQL injections and other security problems. The first example solves all
of these problems automatically by allowing the driver to lay the values into
the SQL.

The third example shows Picalo’s query builder feature. This feature
allows more robust creation of SQL and more readable code. The method
builds the SQL piece by piece rather than all in one statement.

Note that with all the above methods, you must call commit to make
your changes permanent. If you forget this step, all your changes will be lost
when you close the connection.

Page 82 of

© 0N OO W N

CHAPTER 5. WORKING WITH DATABASES Picalo Cookbook

5.7 Upload an Entire Table to a Database

Picalo GUI Recipe:
1. Connect to a database so it is listed in the left-side object browser.
2. Create or load a Picalo table so it is listed in hte left-side object browser.
3. Select Data — Upload Table to Database...

4. In the dialog that comes up, select your table name and database con-
nection name. Enter the new database relation name (i.e. the table
that will be created).

5. Click OK to upload the table.

Script Recipe:

load a Picalo table

data = load_tsv(’c:/MyFiles/data.tsv’, header_row=True)
data.set_type(’Amount’, float)

data.set_type(’BirthDate’, Date)

connect and upload to the database

conn = Database.OdbcConnection(’mydb’, username='me’, password=’ps’)
conn.post-table (data, ”employees”, replace=False)

conn. close ()

Discussion:

Picalo contains an experimental feature to upload entire Picalo tables to
database relations. This feature is experimental because subtle differences
between databases may cause the method to fail. Please test the method on
your database before trusting it to real tables and databases.

To upload the table, Picalo first inspects the table for column names and
types. It constructs a CREATE TABLE statement for the table and executes
it. The replace parameter allows you to control whether existing relations in
the database are overwritten. Picalo then executes INSERT queries for each
record in the table to upload the data to the database.

Page 83 of

CHAPTER 5. WORKING WITH DATABASES Picalo Cookbook

Note the absence of the commit statement in the example code. For
several reasons, the post_table method must commit after each record is up-
loaded. Therefore, there is no need to manually commit after the upload
command.

The method can be a very useful way to import delimited text files (or
other sources) into any database. While some DBMS front ends allow you
to import data, Picalo can help you insert records when importing is not
available. This function can also query a table from one database and post
the data to another.

Page 84 of

CHAPTER 5. WORKING WITH DATABASES Picalo Cookbook

5.8 Copy a Table From One Database to An-
other

This can be done automatically with Recipe UploadTable.

Page 85 of

CHAPTER 5. WORKING WITH DATABASES Picalo Cookbook

5.9 Create a Database Index

Picalo GUI Recipe:

1. Not available in Picalo. Please consult your database documentation
for graphical ways to create indices.

Script Recipe:

conn = Database.OdbcConnection(’mydb’, username='me’, password=’ps’)
conn. execute ("CREATE INDEX mytableindexl ON mytable(id, name)”)
conn. close ()

Discussion:

Picalo automatically creates indices as needed for its own tables. You should
never need to manually create indices on Picalo tables.

However, databases require that you create indices on database relations
to speed up queries. For large data sets, database indices can mean the
difference between a 30 minute query and a 24 hour query. While the concept
of database indices are beyond the scope of this recipe, you should always
examine your SQL queries to see what fields you are filtering on (i.e. the
WHERE clauses). Adding indices for these fields will significantly speed up
your queries.

The drawback to indices is the additional overhead required for the database
to maintain each index. Indices must be updated each time you insert, up-
date, or delete a record. Indices also use additional disk space and memory.

Page 86 of

oo W N

CHAPTER 5. WORKING WITH DATABASES Picalo Cookbook

5.10 Delete a Record From a Database

Picalo GUI Recipe:

1. Not available.

Script Recipe:

conn = Database.OdbcConnection(’mydb’, username='me’, password=’ps’)
id = 15

conn.execute ("DELETE FROM mytable WHERE id=%2", (id,))

conn . commit ()

conn. close ()

Discussion:

In the above example, all records with id equal to 15 are deleted from the
table. Assuming the id field is your primary key, this query matches at most
one record. If no records with an id of 15 are found, no changes are made.
Note the use of the commit statement to make the changes permanent.

The example syntax uses the standard Python driver method of writing
the SQL statement yourself. Field values are denoted with a percent sign
in the first parameter, the SQL. The second parameter is a tuple (or list) of
values to be inserted into the SQL statement upon execution. This is the
preferred way of constructing SQL statements manually because it allows the
driver to handle special characters (like commas or quotes) automatically.
Note that the second %s in the string does not require single quotes, even
though the nm variable is a string.

Readers may note the seemingly extra comma in the parameter list: (id,
). This comma is required to tell Picalo that the parameter is a tuple (e.g.
read-only list). If you leave the comma off, Picalo will ignore the parentheses
and, depending upon the database driver you are using, may fail.

Page 87 of

=

= O © 0 N O Uk W N

CHAPTER 5. WORKING WITH DATABASES Picalo Cookbook

5.11 Delete All Records From a Database

Picalo GUI Recipe:

1. Not available.

Script Recipe:

delete the records, but keep the (now empty) table

conn = Database.OdbcConnection(’mydb’, username='me’, password=’ps’)
conn.execute ("DELETE FROM mytable”)

conn . commit ()

conn. close ()

drop the entire table from the database

conn = Database.OdbcConnection(’mydb’, username='me’, password=’ps’)
conn.execute ("DROP mytable”)

conn . commit ()

conn. close ()

Discussion:

Because the first example contains no WHERE clause, all records in the
database match the query and are deleted. Note the use of the commit
statement to make the changes permanent.

Page 88 of

0 N O Uk W N

CHAPTER 5. WORKING WITH DATABASES Picalo Cookbook

5.12 Access a Database Directly (bypassing
Picalo)

Picalo GUI Recipe:

1. Not available.

Script Recipe:

import the driver and comnect to the database

import psycopg?2

conn = psycopg2.connect('mydb’, username=’me’, password=’ps’, host="10.5.2.1")
create a cursor and run the query

cursor = conn.cursor ()

cursor . execute (”SELECT id , name FROM mytable”)

iterate through the results
for rec in cursor:
print ’id is:’, rec[0]
print ’name is:’, rec[1]

close up shop
cursor . close ()
conn. close ()

Discussion:

There may be times that you want to bypass Picalo entirely and use the
database driver directly. Perhaps Picalo adds too much overhead to your
query. Or perhaps you need to run a driver command directly. Even though
you might enter the code in the Picalo shell or run a script from the Picalo
run command, your code always runs directly in Python. Picalo commands
are only used when you explicitly call them.

The above example shows how to connect to a PostgreSQL database
directly (the command varies by database driver), query a result set, and
print each record. Note that since you are bypassing Picalo, you cannot
access field values by column name, cannot use most Picalo functions, and
can only access the records sequentially.

Page 89 of

0 N O U R W N =

e e
B W N = O ©

CHAPTER 5. WORKING WITH DATABASES Picalo Cookbook

5.13 Create Unique Numbers

Picalo GUI Recipe:
1. Not available.

Script Recipe:

import the GUID library
from picalo.lib import GUID

create a few guids and append to a list
myguids = []
for i in range(len(10)):

g = GUID. generate ()

myguids . append (g)

print information about the GUIDs
for g in myguids:

print ’IP:’, GUID. extract_ip (g)

print ’Time’, GUID. extract_time (g)

print ’Counter:’, GUID. extract_counter (g)
Discussion:

Picalo contains a GUID generator library. GUIDs are globally-unique IDs
that are unique in space and time. Each GUID encodes the IP address of the
computer where it was created, the millisecond (since 1970), and a sequence
number (in case two GUIDs are created in the same millisecond on the same
computer).

GUIDs are generally useful as database keys, network packet identifiers,
web cookies, and other places where unique numbers are needed. When used
as database keys, they circumvent the need to keep a running counter, run
a "max” query on the primary key field, or use a non-portable autoincre-
menting field. Using GUIDs for database keys also allows you to combine
database tables together (for example, from two databases) without getting
key clashes and without having to rewrite primary and foreign keys.

GUIDs are not perfectly unique. If two processes on the same machine
create GUIDs at the same time, you might get a clash. If two machines have
the same IP address (i.e. private IP addresses might do this), they might
create clashing GUIDs. But if you control for these factors, GUIDs give you
a quick, portable, way to generate unique numbers.

Page 90 of

Chapter 6
Scripting

Scripting is your highway to automation and macros in Picalo. Picalo is
based upon a very powerful, popular language: Python. By using a standard
language, Picalo inherits a significant amount of functionality and power, in-
cluding a large module library, true object-orientation, and web and filesys-
tem abilities.

I think you’ll find the Python language well-written and easy to learn. It
is widely regarded as one of the ‘prettier’ languages on the market, and it
has served as an excellent foundation for Picalo.

91

CHAPTER 6. SCRIPTING Picalo Cookbook

6.1 Run a Command in the Shell

Picalo GUI Recipe:

1. Ensure the Shell tab is visible in the bottom right area of the Picalo
window. If you can see the tab but can’t see the Shell window, you
might need to drag the window splitter up to reveal the window.

2. Click the mouse to the right of the bottom-most >>> indicator. You
can only type commands on the bottom-most indicator line.

3. Type your command and press Enter.

Discussion:

The Shell is one of the most powerful features of Picalo. Using the Shell, you
can enter Picalo commands directly. This is useful when you are testing out
functions that you’ll use in a larger script later and when you need to enter
one or two additional commands after a script finishes.

Memory and variables are shared by all parts of Picalo: the GUI, the
Shell, and scripts. In you create tables in your scripts, you'll see them listed
in the left-side object browser after the script finishes. If you modify a table
using a Shell command, you’ll immediately see it reflected in the viewer area.

The Picalo GUI, including all dialog boxes, is actually just a front end
to the Shell. As you use the dialogs of Picalo, you’ll see the corresponding
commands run automatically in the Shell. This is transparent and shown to
you so you can learn the commands directly. The goal of the GUI is to help
you start scripting (where you can really use Picalo’s power). The Shell is
an intermediate step in this goal.

Page 92 of

CHAPTER 6. SCRIPTING Picalo Cookbook

6.2 View the History

Picalo GUI Recipe:

1. Click the History tab in the bottom right area of the Picalo window.
If you can see the tab but can’t see the actual window, you might need
to drag the window splitter up to reveal the window.

Discussion:

The history keeps track of every command (including GUI dialogs) you run
in Picalo. This allows you to repeat your commands at a later date, convert
your commands to a script, and document your work. If your work with
Picalo involves legal action, keeping a log of your work is vital.

Page 93 of

CHAPTER 6. SCRIPTING Picalo Cookbook

6.3 Save the History

Picalo GUI Recipe:
1. Select FEdit — Save History...

2. Enter a filename and click Save.

Discussion:

The history keeps track of every command (including GUT dialogs) you run
in Picalo. This allows you to repeat your commands at a later date, convert
your commands to a script, and document your work. If your work with
Picalo involves legal action, keeping a log of your work is vital.

Page 94 of

CHAPTER 6. SCRIPTING Picalo Cookbook

6.4 Start a New Script

Picalo GUI Recipe:

1. Select Script — New Script or click the little blue folder in the left
end of the toolbar.

Discussion:

Picalo scripts are by far the most powerful way to use Picalo. Scripts allow
you to combine the Picalo data analysis functions with the excellent Python
language. They are similar to (but more powerful than) macros on other
platforms.

To begin scripting, watch the Shell as you use the Picalo GUIL. As you
watch the Picalo functions being used, you’ll get an introduction to the com-
mands that can be used in scripts.

The Picalo editor is only a basic text editor. It does not have the power-
ful features you might find in dedicated editors like TextWrangler (Mac),
Notepad++ (Windows), or many other powerful editors on the market.
Picalo supports your use of these editors. If you load a script into both
Picalo and your favorite editor, Picalo will automatically detect when you
make changes to the file. When it detects that you’ve made changes in a
separate application, it will prompt you to reload the file from disk.

Page 95 of

CHAPTER 6. SCRIPTING Picalo Cookbook

6.5 Run a Script

Picalo GUI Recipe:

1. Load or create a script using the Script menu. You should see your
script in the viewer area.

2. Select Edit — Run Script from the menu or click the blue triangle
icon on the toolbar.

Discussion:

Scripts should normally be run directly in Picalo. This allows you to use
Picalo’s viewer area, existing variables (like database connections created
before the script run), and Picalo’s editor to create and run your script.
When the script is finished, any variables you create will be available for
further analysis and inspection.

This shared-memory model is by design. Most analysts want their data
available after a script run. The drawback of this model is your script may
overwrite existing variables in memory. If you are worried about overwriting
existing variables, run your script in a new Picalo instance (Recipe .

Page 96 of

CHAPTER 6. SCRIPTING Picalo Cookbook

6.6 Run a Script in New Picalo

Picalo GUI Recipe:

1. Load or create a script using the Script menu. You should see your
script in the viewer area.

2. Select Edit — Run Script In New Picalo from the menu or click the
blue triangle icon on the toolbar.

Discussion:

Because Picalo shares memory between scripts, the GUI, and the Shell, vari-
ables might step on one another. While this shared-memory model is nor-
mally desirable, Picalo allows you to run your scripts within a fresh instance
of the program with a single command. This ensures that your script starts
with nothing previously existing. It also allows you to terminate the new
Picalo (if needed) without affecting your existing Picalo run.

Page 97 of

CHAPTER 6. SCRIPTING Picalo Cookbook

6.7 Run a Script Outside of Picalo

Picalo GUI Recipe:

1. Not available (obviously if you want to do this outside of Picalo! :)

Discussion:

There may be times that you want to remove the Picalo GUI entirely. This
allows you to use Picalo functions like Database, Grouping, Simple, etc.
within other programs, as part of a cron or scheduler job, or directly from the
command prompt/terminal. There are many organizations that I've worked
with that are using Picalo in this manner on their servers.

In fact, Picalo was originally meant to run as embedded software and had
no GUI. Since that time, I have made sure that Picalo can continue to be
run this way. It hasn’t always been easy to ensure the GUI is not required,
but it has been done.

To run Picalo without the GUI, complete the following steps:

e Install Python from http://www.python.org/. Windows users should
install ActivePython, an extension to Python that integrates with Win-
dows better than standard Python. *nix and Mac users probably al-
ready have Python installed (go to the terminal and type ”python” to
find out).

e Download the source distribution of Picalo from http://www.picalo.org.
Unzip the tar.gz file to an empty directory somewhere.

e Open a command prompt (Windows) or a terminal window (Mac/*nix).
Navigate to the directory where you unzipped Picalo. This directory
should have a setup.py file in it.

e Type python setup.py install. Picalo will install into your Python
libraries.

e To test your installation, start Python (type "python” at the command
prompt) and type from picalo import *.

Page 98 of

CHAPTER 6. SCRIPTING Picalo Cookbook

e Now that Picalo is installed, simply include the line from picalo
import * at the top of your scripts. You'll be able to run them just
like any other Python script.

Page 99 of

0 N O Ut A W N

CHAPTER 6. SCRIPTING Picalo Cookbook

6.8 Cancel a Running Script

Picalo GUI Recipe:

1. Not available.

Script Recipe:

go through a table one record at a time
for i, rec in enumerate(mytable):
show the wuser progress
THIS is what allows the user to cancel the script
perc = float (i) / float (len(mytable))
show_progress (perc, ’Processing the table’)
do your analysis here
Discussion:

Picalo utilizes a shared-memory model for running scripts, which means that
scripts run within the Picalo environment. When scripts are running, all of
Picalo’s attention is given to the running script. The only part of the Picalo
window that will update is the output area (i.e. when you use the print
statement to print results. The rest of Picalo will appear frozen.

The alternative approach (the one used by most development environ-
ments) is to run scripts in a separate process. This would allow the Picalo
GUTI to remain responsive and would allow you to simply kill the process at
any time by clicking a ‘Stop’ button. However, running in a separate process
would not allow memory sharing to occur. One of the strengths of Picalo is
the connection between scripts and the GUI. Anything you do in scripts is
reflected in the left-side object browser and in the table views. When scripts
are finished, you can continue to analyze your data because the variables
and tables remain in memory. If you truly wish to run a script in a separate,
stoppable process, select Run Script In New Picalo to start a new Picalo
instance and memory space. You can then terminate the new Picalo at any
time through your regular operating system methods.

Page 100 of

CHAPTER 6. SCRIPTING Picalo Cookbook

The preference at most times is for Picalo and scripts to share memory.
This means that Picalo cannot simply kill scripts at will — doing so would
leave system resources in a dirty state and would make Picalo unstable.
The undesirable effects of terminating threads directly is a well-documented
computer science phenomenon. This is why Picalo doesn’t include a ‘Stop’
button on its interface.

Now that I've (hopefully) convinced you that there are good reasons to
limit the direct termination of scripts, let me explain the workaround. The
‘right” way to stop a script is to raise an exception so your scripts exits on
their own. The easiest way to do this is to show a progress bar to the user.
The standard Picalo progress dialog has a ‘Cancel” button.

Every time you call show_progress, Picalo will check to see if the user has
hit the cancel button. If the user has canceled the operation, Picalo will raise
an exception and your script will exit immediately.

For this to work, though, you need to call show_progress often in your
script. The method is efficient and will not significantly affect your script
speed. If you simply show a progress dialog at the beginning of your script
and never update it, Picalo won’t have a chance to check the cancel button.

The bottom line is to call show_progress before each part of your analysis,
within your for and while loops, and everywhere else it makes sense to show
the user updated progress. The user will thank you anyway because users
always like to see the progress of their analyses.

Page 101 of

B oW N R

CHAPTER 6. SCRIPTING Picalo Cookbook

6.9 Use a Standard Python Module

Picalo GUI Recipe:

1. Not available.

Script Recipe:

import random

for i in range(100):
print random.randint (0, 1000)

Discussion:

The functions of Python are organized according to modules. Rather than
loading all available functions in to memory each time your run a script,
Python only loads a few standard functions. Any additional functions you
want to use must be imported into your script. This separation of functions
into different modules provides for organization and efficient memory usage.

The standard Python libraries are described in the Python documenta-
tion at http://www.python.org/. Readers are encouraged to investigate
these libraries to learn about the many functions available. Thousands more
additional libraries can be found on various web sites.

When you create a new script, Picalo inserts a few import statements at
the top of your file. The first statement, from picalo import *, imports
the primary Picalo libraries for use in your script. The second statement
imports commonly-used Python functions, such as the following:

e sys: Access to system resources and information.
e re: Regular expression libraries for powerful, advanced text searching.

e datetime: Access to Python’s built-in date and time library. Picalo
uses this library for the built-in DateTime and Date types.

e os: Functions related to files, directories, and system processes.

Page 102 of

http://www.python.org/

CHAPTER 6. SCRIPTING Picalo Cookbook

e os.path: Functions for parsing file and directory names.

e urllib: Allows reading of web pages; useful for ethical scraping tech-
niques.

Page 103 of

CHAPTER 6. SCRIPTING Picalo Cookbook

6.10 Use a Nonstandard Python Module

Picalo GUI Recipe:

1. Not available.

Script Recipe:

See discussion below for installation , then import normally:

3 import mymodule

Discussion:

Picalo is released as a standalone program (exe for Windows and app for
Mac). The python interpreter bundled with the application is frozen when
compiled, and it can’t be changed directly. Therefore, only the modules
included in the frozen build (at compile time) are normally available.

For those advanced users who want to use additional modules in their
code, there is a workaround available. Additional modules might be the
Python Imaging Library, an additional database driver, the python interface
to R, or any number of modules available on the Internet. To install an
additional library not normally included with Picalo, use the following steps:

1. Install the regular version of Python (i.e. from http://www.python.
org or ActivePython on your computer. Advanced users will probably
already have a standard Python interpreter installed. Linux and Mac
users also have Python installed by default.

2. Install your library into the standard Python interpreter (not into
Picalo). This is normally done with python setup.py install or
some variation thereof.

3. Start your standard Python interpreter and ensure that the new module
works as expected.

Page 104 of

http://www.python.org
http://www.python.org

CHAPTER 6. SCRIPTING Picalo Cookbook

4. Append the site-packages directory from your standard Python in-
stallation to sys.path when in Picalo. For example, suppose you install
a module called mymodule into your regular Python installation and
want to use it in Picalo. Once it is installed correctly, start Picalo and
type the following:

append to the system module path
sys.path.append(’c:/python/site —packages’)

import normally
import mymodule

Ul W N

5. Use your module within Picalo!

The site-packages directory location varies depending upon where your
Python interpreter is installed. For example, the standard Mac Leopard lo-
cation is /Library/Python/2.5 /site-packages. An easy way to find out where
your new module is installed is to check the __file__ attribute of your module.
For example, in your regular Python interpreter (not in Picalo), type the
following;:

import mymodule
print mymodule. _ _file__
This will tell you what directory needs to be included in sys.path to make
things work.

For now, you need to add the module path to sys.path every time you
start Picalo.

Page 105 of

G W N =

oA W N =

CHAPTER 6. SCRIPTING Picalo Cookbook

6.11 Create Function Libraries

Picalo GUI Recipe:

1. Not available.

Script Recipe:

mathlib.py

def divide (numerator, denominator):
"’’’ Returns the quotient and remainder of division '’
quotient = int (numerator) / int(denominator)
remainder = int (numerator) % int (denominator)
return quotient, remainder
myscript.py

import mathlib

q, r = mathlib.divide (5, 2)

print ’Quotient is’, q

print ’Remainder is’, r

Discussion:

Picalo allows you to centralize common functions into library scripts, called
modules. Modules are simply regular scripts that have their code expressed
as functions and that are imported into other scripts. In the example above,
the divide function is declared to have two parameters. At the end of the
function, it returns two values. A module can have as many functions as
you wish to place in it. Modules can also contain classes, global variables,
and just about anything else a regular script contains. The example above
is named “mathlib.py”.

The functions, variables, and classes in a module are imported into an-
other script by the import command. Functions from imported modules are
called using the modulename.functionname format as shown in the example
above. Notice how the “myscript.py” script imports the module name with-
out the .py extension. You can think of the import command as a virtual
cut and paste operation. At the point of the import command in myscript,

Page 106 of

CHAPTER 6. SCRIPTING Picalo Cookbook

all of the code from the mathlib.py module are essentially included in the
file, as if they had been in myscript.

Normally, a script must be in the same directory as an importing script.
Python contains a search path for module files, and the top-level script is at
the first of this search path. For advanced users, you can actually modify the
search path using sys.path, but modifying the search path could make Picalo
unstable (for example, if you remove the path to Picalo’s modules). It is
usually safest to simply place the two scripts (the module and the importing
script) in the same directory.

Page 107 of

0 N O Ut A W N

CHAPTER 6. SCRIPTING Picalo Cookbook

6.12 Show Script Progress to the User

Picalo GUI Recipe:

1. Not available.

Script Recipe:

go through a table one record at a time
for i, rec in enumerate(mytable):
show the wuser progress
perc = float (i) / float (len(mytable))
show_progress (perc, ’Processing the table’)
do some analysis with the table here
rec.Name = rec.FirstName 4+ ’ ’ 4 rec.LastName
Discussion:

Picalo contains a standard progress dialog that your scripts can use. The
show_progress command shows the dialog with a custom message and a per-
cent done bar. The percent done should always be given as a floating point
number between 0 and 1. If the percent done is not in this range (i.e. greater
than or equal to 1), the progress dialog is removed.

The progress dialog only shows when you are running the GUI version of
Picalo (as most users do). If you are running a script directly in your terminal
(i.e. from Bash or the Command Prompt), the command will be ignored by
Picalo. In other words, if you include the show_progress command, your code
will work whether or not the progress dialog can be shown or not.

Showing a progress bar is important because it allows the user to cancel
your script at any time. It also provides feedback so the user knows the script
is running successfully and is not frozen.

Page 108 of

CHAPTER 6. SCRIPTING Picalo Cookbook

6.13 Turn Off Picalo Progress Indicators

Picalo GUI Recipe:

1. Not possible

Script Recipe:

use_progress_indicators (False)

Discussion:

There may be times when you want Picalo to go silent. Normally, Picalo
uses progress indicators, both in GUI and text mode, to let you know how
an analysis is going. Turn off indicators with the use_progress_indicators
function. Turn them back on with a True parameter.

Page 109 of

1
2
3
4

o g o v

11
12
13

CHAPTER 6. SCRIPTING Picalo Cookbook

6.14 Show a File Selector to the User

Picalo GUI Recipe:

1. Not available.

Script Recipe:

import wx, os

filename = wx.FileSelector (” Select a File”, flags=wx.OPEN | wx.FILEMUST_EXIST)
if filename:

parse the directory and filename

dirname , fname = os.path.split(filename)

parse the filename part from the extension part

fn, ext = os.path.splitext (fname)

do something with the filename, such as
for line in open(filename):

line = line.strip ()

print line

Discussion:

The wx toolkit that Picalo is built with is available to your scripts. It pro-
vides ways to build full dialogs, graphical user interfaces, and dialogs. The
documentation for wx is located at http://www.wxpython.org/.

The above example shows how to get a filename from the user. The wx
documentation for this function explains how to set a default filename, use a
filename mask for the dialog, show a save or open dialog, and set the default
directory in the dialog.

Page 110 of

http://www.wxpython.org/

Chapter 7

Text Processing

111

CHAPTER 7. TEXT PROCESSING Picalo Cookbook

7.1 Read an Entire Text File

Picalo GUI Recipe:

1. Not available.

Script Recipe:

f = open(’c:/temp/myfile.txt’)
data = f.read()

3 f.close ()

Discussion:

Picalo can read text files in several ways using the open command. The
example shows how to read an entire file into a string variable. The data
variable in the example holds the entire bytes of the file, including new line
characters. The open command returns a file object, which is a pointer to
the file bytes on disk.

A more effective way of reading text files is usually line by line, which is
shown in the next recipe.

Page 112 of

=

H O © 0 N0 s W N

CHAPTER 7. TEXT PROCESSING Picalo Cookbook

7.2 Read a Text File Line By Line

Picalo GUI Recipe:
1. Not available.

Script Recipe:

read a file efficiently
f = open(’c:/temp/myfile.txt’)
for line in f:

line = line.rstrip ()

print line
f.close ()
read a file into a list of file lines
f = open(’c:/temp/myfile.txt’)
lines = f.readlines ()
f.close ()
Discussion:

Picalo can read text files in several ways using the open command. The first
example shows the most efficient way to read files — line by line. Since only
a single line is read at a time, the operation takes very little memory, even
for large files. The open command returns a file object, which is a pointer to
the file bytes on disk. Since file objects can act like regular Python lists, the
code is able to iterate across the file lines using the familiar for loop.

The rstrip() command is issued immediately after reading a new line
to strip off any trailing white space. When Picalo reads files lines, it does
not remove the new line character, which is character 10 on Unix/Mac and
characters 13 and 10 on Windows. Stripping the right side of the line removes
any extraneous white space, which includes new line characters, tabs, and
spaces.

The second example shows a less efficient but easier way to read files. If
you have a relatively small file (that can be held in memory all at once), the
readlines function will turn the file lines into a real Python list. You can then
use all the familiar methods of lists, access arbitrary locations like lines[2| for
the third line, sort the lines, etc.

Page 113 of

[un

O © 0 N O U W N =

CHAPTER 7. TEXT PROCESSING Picalo Cookbook

7.3 Import Email Into Picalo

Picalo GUI Recipe:
1. Select File — Import — Email...

2. Follow the wizard.

Script Recipe:

import email

msg = email. message_from_file (open(’an_email.txt’))
print msg['To’]
print msg[’Subject ’]
for part in msg.walk ():
if part.get_content_maintype() = ’multipart’:
continue
print ’
print part

)

Discussion:

Picalo contains a wizard to import both mbox-formatted and Maildir-formatted
email messages. For Outlook, Notes, or GroupWise email, search the web
for a converter program. For example, many converters exist to convert Out-
look’s .pst file format to mbox format. Once you get the email in the right
format, Picalo’s import wizard will create a table for the entire mail folder.

If you prefer to use code, Python’s standard email module can parse many
different types of email. In the example script, the parts of a Maildir-style
of email is walked. Maildir style is a type of email storage on Unix servers
that keeps each email in a separate file in the user’s home directory. It is
one of the most common email storage formats in the world. Other email
systems, such as MS Exchange, keep emails in a relational database (these
email systems are best accessed by administrator programs).

With a few modifications, the above code can also read mbox-style files.
The file would first need to be split on the new line + ‘From’ keyword. Use

Page 114 of

CHAPTER 7. TEXT PROCESSING Picalo Cookbook

the string split method to split the Mbox file into a list of individual emails,
then run the above algorithm on each item in the list.

The email module creates a message object, termed ‘msg’ in the example.
Message headers are accessed using the dictionary interface, such as msg/To’
to get the recipient information. The parts of the email, such as the main
body, attachments, an html-version of the email, and a plain-text version of
the email, are accessed by walking the parts.

Using the above recipe, you could easily walk a large set of emails and
import them into a structured Picalo table or into a database. If you need
to go through many files in a directory (i.e. Maildir style), use the os.listdir
function to get all the files in the directory.

Finally, since Picalo is an open source application, advanced users might
want to look at the import wizard script directly. It is in the picalo/gui/wiz-
ards directory of the source distribution.

Page 115 of

CHAPTER 7. TEXT PROCESSING Picalo Cookbook

7.4 Extract Data From Nonstandard Text Files

Picalo GUI Recipe:

1. Use the data import wizard to import the data. Nonstandardized text
files require scripts, as shown in the example below.

Script Recipe:

© 0 N O U W N =

BB W W W W W W W W W W NN NNNDNNN N R e e e e e e e
H O © 0 90 Gk WO ®©O0WwW-NO U & WK F O ©OWw-NNO O Wi - o

import the regular expression library
from picalo import x
import re
create a table to hold the data
data = Table (]
(’fname’, str),
(’lname’, str),
(’mname’, str),
(’suffix’, str),
1
for line in open(’names.txt’):

first remove extraneous white space and newline

name = line.strip ()

check for last mame alone

match = re.search(’"(\w+)$’, name)

if match:
newrec = data.append ()
newrec.lname = match.group (1)
continue

check for first last

match = re.search(’"(\w+)\s+(\w+)$’, name)
if match:
newrec = data.append ()
newrec . fname = match.group (1)
newrec.lname = match.group (2)
continue

check for first mi last

match = re.search (" (\w+)\s+(\w)\s+(\w+)$’, name)
if match:

newrec = data.append ()

newrec.fname = match.group (1)

newrec .mname = match.group (2)

newrec.lname = match.group (3)

continue

check for first last suffiz

Page 116 of

42
43
44
45
46
47
48
49
50
51

CHAPTER 7. TEXT PROCESSING Picalo Cookbook

match = re.search (" (\w+)\s+(\w+)\s+(\w+)$’, name)

if match:
newrec = data.append ()
newrec.fname = match.group (1)
newrec.lname = match.group (2)
newrec. suffix = match.group (3)
continue

wview the table
data.view ()

Discussion:

There may be times that you cannot use Picalo’s standard data import rou-
tines (tsv, csv, fixed, etc.) because your data does not match any common
standard. These type of data files are not difficult to read; just use Python’s
powerful regular expression library to extract the fields. Regular expressions
are very powerful and are not trivial to utilize. You should read the standard
Python documentation for regular expressions for more information on this
powerful text analysis tool.

The first step is to read the data file line by line (assuming each line
represents a record). On each record, try to match the line using a regular
expression pattern. When you get a match, extract the fields using groups.
Groups are defined in your regular expression pattern with parenthases.

The example pattern above, we assume that an input file has a number
of employee names. We want to split the full names into the first, middle,
last, and suffix. The file is difficult to read with standard methods because
of the following:

e Some lines contain only last names, some contain first+last, some con-
tain first+middle initial+last, and some contain first-+last+suffix. Be-
cause of this lack of standardization, the file is difficult to read.

e Each line contains a number of spaces between the name parts. Some
contain only one space and others contain many. There is no way to
predict how many spaces are between name parts.

The patterns in the script use the following matching characters:

e \w: This character represents a single letter or number.

Page 117 of

CHAPTER 7. TEXT PROCESSING Picalo Cookbook

e \s: This character represents a single white space character (e.g. a
space)

e +: The plus indicates that the previous character can be repeated one
or more times. The plus is always used in combination with another
character, such as \s, which matches one or more spaces.

~

e " and $: These characters match the start and end of each line. If we
do not specifically mark the beginning and end of the line, the pattern
will match parts of lines, which we do not want to allow in this case.
We want to match all characters on the line, especially since we are
stripping any extra white space at the beginning of each loop iteration.

e parenthases: These mark groups, which is how the script pulls data
from each line. Notice that the number of matched parentheses always
matches the group statements below each pattern. The first pair of
parentheses is group(1), the second is group(2), and so forth.

The script will iterate through each line of the file. On each line, it tries
first to match the last name alone. If successful, it records the name into the
data table and continues to the next line. If unsuccessful, it continues to the
next match. Since the matches are given in order of increasing specificity,
the script is able to extract the data.

Notice that the only difference between the third and fourth patterns is
a single plus sign. Both the first+mi+last and first+last+suffix lines have
three words separated by spaces. Since the middle initial is only one character
(notice the lack of the plus on the pattern), we can differentiate between the
two lines.

This recipe is only an introduction to what regular expressions can do.
Regular expressions were invented through linguistics research many decades
ago — before the advent of computers. They are by far the most powerful
text searching and matching language I've found. They are probably your
best bet in matching and searching any kind of text.

Regular expressions are the most common matching method used in com-
puter programming; support for standard regular expressions can be found
in most modern languages. If you do a lot of text matching, I suggest you
purchase a book on regular expression syntax.

Page 118 of

Chapter 8
Other Useful Tasks

This chapter contains recipes for useful tasks that do not fit into other chap-
ters.

119

AW e

CHAPTER 8. OTHER USEFUL TASKS Picalo Cookbook

8.1 Generate Random Numbers

Picalo GUI Recipe:
1. Double-click a table in the left-side project browser to view the table.
2. Select File — Table Properties .
3. Add a new column and set its type to ’Calculated Field’.

4. Enter the following calculation: random.randint(100, 500).

Script Recipe:

a = random.randint (100, 500)

b = random. uniform (100, 500)

table.append_calculated ("random.randint (100, 500)”)
table.append_calculated_static (’random.randint (100, 500)”)

Discussion:

Random number generation can be useful when sampling tables, running
dynamic analyses, using genetic algorithms, or in many other instances.
Python’s random library can generate many different types of numbers, in-
cluding integers and floating-point numbers. In addition, it can match several
distributions like uniform, betavariate, expovariate, gammavariate, guass,
and many others.

The GUI recipe adds a calculated column to a table. The expression in the
new column uses the random library to generate a random integer between
100 and 500. An alternative expression might have been random.uniform(100,
500) to generate a decimal number in the same range.

The GUI recipe above has a catch: since calculated fields added with
Picalo’s table properties dialog are dynamic, the random numbers will be
regenerated each time you view the table. If you need the numbers to be
stable and unchanging, use append_calculated_static from the shell rather
than the table properties dialog.

Page 120 of

CHAPTER 8. OTHER USEFUL TASKS Picalo Cookbook

The shell recipe shows several different examples of generating random
numbers. The first two (randint and uniform) create a random integer and
floating-point number, respectively. The third example appends a dynamic
column of random numbers (read the catch in the previous paragraph). The
fourth and final line adds an unchanging column of random numbers. Once
generated, these numbers remain the same throughout the life of the table.

Page 121 of

CHAPTER 8. OTHER USEFUL TASKS Picalo Cookbook

8.2 Randomize Table Records

Picalo GUI Recipe:

1. Not available.

Script Recipe:

random . shuffle (table)

Discussion:

Suppose you have a table and want to randomize the records. In other words,
you want the records shuffled into a new, random order. One application of
this technique is to get a random sample of records in a table. Just shuffle
the table, then take the top n records for your sample.

The technique uses the shuffle function in Python’s random library. Once
you have shuffled a table, there is no way to return to the previous order
(unless you can sort the table to its previous order using a primary key
column).

Page 122 of

N O Ot W N =

CHAPTER 8. OTHER USEFUL TASKS Picalo Cookbook

8.3 Choose a Random Table Record

Picalo GUI Recipe:

1. Not available.

Script Recipe:

this method simply selects a random record

rec = random. choice (table)

this method copies a single record to a new table,
then selects the record

randnum = random.randint (0, len(table))

rec = table[randnum: randnum+1][0]

Discussion:

The first method uses the choice method of the random library, which selects
a random element from a list (since a table is a list of record objects, this
works). Be aware that the record is still part of the table; any changes you
make to the record will be reflected in the source table.

The second method selects a copy of a record rather than the source
record. It does this by using [a: b] notation to first generate a selected
copy of the source table. It then selects the record from this new table.
This method, while more complex, allows you to make changes to the record
without affecting the source data.

Page 123 of

==
N =

CHAPTER 8. OTHER USEFUL TASKS Picalo Cookbook

8.4 Scrape a Web Page for Data

Picalo GUI Recipe:

1. Not available.

Script Recipe:

import re, urllib
suppose the HIML of the web page we’re looking for is:
200
<html><body>
Welcome to my weather station site. I run a weather station for my area,
and it sample the weather conditions every few minutes. Here’s the data:

Current Temperature: 14 degrees
Current Wind: 5 kph NW

</body></htmi>

]

first step is to download the text from the web site

f = urlopen(’http://www. myweatherserver.com/current.html’)

text = f.readlines ()

f.close ()

the text wvariable now contains the HIML of the web page!

we assume it’s the string at the top of this script (for demo purposes)

there are many ways to do this, but we’ll just go
through the file omne line at a time
for line in text:
match = re.search(’Temperature: (\d+) degrees’)
if match:
print ’Current weather is’, match.group (1)

Discussion:

Web page scraping is as old as the World Wide Web. It is the method
by which search engines spider the web to populate their searches, the way
spammers get lists of email addresses, and the method that clever analysts
get needed data.

The problem is the web presents human-readable data; it’s unorganized,
free text. Suppose a web site publishes information that you need for an

Page 124 of

CHAPTER 8. OTHER USEFUL TASKS Picalo Cookbook

analysis. It might be weather data, law enforcement information, or any
other type of data. You should first try to find the data in a structured
format — some web sites give a link for their data in XML, CSV, TSV, or
other format. If no structured source is available, you have two choices left:
either go through the pages by hand, one by one, or write a short program
to do the walking for you.

Web scraping is an inherently fragile process. The source web site pub-
lisher is free to change the data anytime he or she wishes (breaking your
scraper). Most web sites track the number of hits on their site, and when
your robot quickly hits thousands of their web pages, they might kick you
off their web server. Web scraping should be used as a last resort.

Before talking about how to do this, I should discuss the ethics of scraping
web pages. On the one hand, web scraping makes the web work — we wouldn’t
have search engines without it. On the other hand, web scraping has been
the source of a significant amount of spam. In effect, you are going to write
a program that will mimic your web browsing — going to sites and searching
for information very quickly. Instead of your going to each web page, your
program will do it, analyze the HTML text, and grab the information you're
looking for. Web scraping can bring down web servers because of repeated
hits, violate privacy, and cause general havoc if used incorrectly.

Most web server provide a file, ROBOTS. TXT, in their web root. Simply
go to http://www.server.com/ROBOTS.TXT (case sensitive) where server is
the name of the server you want to scrape. The file will tell you which parts
of the web site can be scraped by robots and which parts cannot. If no file
exists, the site is generally seen as fair game. Note that no one is enforcing
this file — web ruffians certainly don’t abide by them. In fact, Google (which
makes its living by scraping everyone else) allows almost no scraping of their
own site in their ROBOTS.TXT file.

Assuming you feel it is ethical for you to scrape a web site for data,
Python’s urllib and re libraries make it easy and fast to do so. In this
example, I'm only scraping a single web page, but it would be easy to expand
the example to scrape thousands of pages using a simple for loop.

The first step is to download the page text into a variable. Use wurl-
ltb.urlopen to open the web connection, then use readlines to read each line
into a list. Close up the connection. The second step is to use regular ex-
pressions to pattern match the data you are looking for. See the re module
for more information.

Page 125 of

CHAPTER 8. OTHER USEFUL TASKS Picalo Cookbook

Note that the regular expression uses parentheses to group the current
temperature. The text surrounding this group (the keywords "Temperature:’
and 'degrees’) help the regular expression engine know what numbers to find.
If we find a match on the line, calling group(1) gives us the first match.

Page 126 of

	Working With Tables
	Create a Table
	Access a Cell Value
	Modify a Cell Value
	Set a Cell to None
	Retrieve a Table Record
	Retrieve Several Table Records By Index
	Retrieve a Table Column
	Add a Record to a Table
	Delete a Record from a Table
	Count the Records in a Table
	View Table Column Names
	View Table Structure
	Change a Column Name
	Change a Column Type
	Change a Column Format
	Add a Column to a Table
	Add an Active Calculated Column to a Table
	Add a Static Calculated Column to a Table
	Remove a Column From a Table
	Copy an Entire Table
	Copy Part of a Table
	Combine Two Tables
	Delete a Table

	Working With Table Lists
	Create a Table List
	Access an Individual Table in a List
	Add a Table to a Table List
	Convert a Table List into a Table

	Basic Table Analysis
	Making a Table Read-Only
	View Table Descriptives
	Validate Column Data
	Total a Column
	Analyze Each Record in a Table
	Search a Table
	Filter a Table
	Filter a Table Using Wildcards
	Clear a Filter from a Table
	Sort a Table

	Loading and Saving Data
	Load a Picalo Table
	Import a Delimited Text File
	Import a Fixed Width Text File
	Import an EBCDIC Data File
	Import an XML Data File
	Import a Microsoft Excel File
	Save a Picalo Table
	Export a Delimited Text File
	Export a Fixed Width File
	Export an XML Data File
	Export a Microsoft Excel File

	Working With Databases
	Connect to a Database
	View Database Tables
	Run an SQL Query
	Run an SQL Query Efficiently
	Insert a Record into a Database
	Update a Record in a Database
	Upload an Entire Table to a Database
	Copy a Table From One Database to Another
	Create a Database Index
	Delete a Record From a Database
	Delete All Records From a Database
	Access a Database Directly (bypassing Picalo)
	Create Unique Numbers

	Scripting
	Run a Command in the Shell
	View the History
	Save the History
	Start a New Script
	Run a Script
	Run a Script in New Picalo
	Run a Script Outside of Picalo
	Cancel a Running Script
	Use a Standard Python Module
	Use a Nonstandard Python Module
	Create Function Libraries
	Show Script Progress to the User
	Turn Off Picalo Progress Indicators
	Show a File Selector to the User

	Text Processing
	Read an Entire Text File
	Read a Text File Line By Line
	Import Email Into Picalo
	Extract Data From Nonstandard Text Files

	Other Useful Tasks
	Generate Random Numbers
	Randomize Table Records
	Choose a Random Table Record
	Scrape a Web Page for Data

